[1] |
HAGEN J B. The origins of bioinformatics [J]. Nature Reviews Genetics, 2020, 1: 231-236.
|
[2] |
KANEHISA M, BORK P. Bioinformatics in the post-sequence era [J]. Nature Genetics, 2003, 33: 305-310. doi: 10.1038/ng1109
|
[3] |
GAUTHIER J, VINCENT A T, CHARETTE S J, et al. A brief history of bioinformatics [J]. Briefings in Bioinformatics, 2019, 20(6): 1981-1996. doi: 10.1093/bib/bby063
|
[4] |
陈景文, 王中钰, 傅志强. 环境计算化学与毒理学[M]. 北京: 科学出版社, 2018, 22-34.
CHEN J W, WANG Z Y, FU Z Q. Computational chemistry and toxicology of the environment[M]. Beijing: Science Press, 2018, 22-34(in Chinese).
|
[5] |
王中钰, 陈景文, 乔显亮, 等. 面向化学品风险评价的计算(预测)毒理学 [J]. 中国科学:化学, 2016, 46(2): 222-240.
WANG Z Y, CHEN J W, QIAO X L, et al. Computational toxicology: oriented for chemicals risk assessment [J]. Science China Chemistry, 2016, 46(2): 222-240(in Chinese).
|
[6] |
KAVLOCK R, DIX D. Computational toxicology as implemented by the US EPA: Providing high throughput decision support tools for screening and assessment chemical exposure, hazard and risk [J]. Journal of Toxicology and Environmental Health, Part B:Critical Reviews, 2010, 13(2-4): 197-217. doi: 10.1080/10937404.2010.483935
|
[7] |
王先良, 徐顺清. 系统毒理学及其应用 [J]. 生态毒理学报, 2006, 1(4): 289-294.
WANG X L, XU S Q. Systems toxicology [J]. Asian Journal of Ecotoxicology, 2006, 1(4): 289-294(in Chinese).
|
[8] |
SHANA J S, ALAN R B, REX E F, et al. Systems toxicology: from basic research to risk assessment [J]. Chemical Research in Toxicology, 2014, 27(3): 314-329. doi: 10.1021/tx400410s
|
[9] |
THOMAS H, REX E F, PAUL J, et al. Systems toxicology: real world applications and opportunities [J]. Chemical Research in Toxicology, 2017, 30(4): 870-882. doi: 10.1021/acs.chemrestox.7b00003
|
[10] |
桂起权. 解读系统生物学: 还原论与整体论的综合 [J]. 自然辩证法通讯, 2015, 37(5): 219.
GUI Q Q. Reading of systems biology: integration of reductionism and holism [J]. Journal of Dialectics of Nature, 2015, 37(5): 219(in Chinese).
|
[11] |
AARDEMA M J, MACGREGOR J T. Toxicology and genetic toxicology in the new era of 'Toxicogenomics': impact of '-Omics' technologies [J]. Mutation Research, 2002, 499(1): 13-25. doi: 10.1016/S0027-5107(01)00292-5
|
[12] |
IDEKER T, GALITSKI T, HOOD L. A new approach to decoding life: systems biology [J]. Annual Review of Genomics and Human Genetics, 2001, 2: 343-372. doi: 10.1146/annurev.genom.2.1.343
|
[13] |
WATERS M D, BOORMAN G, BUSHEL P, et al. Systems toxicology and the chemical effects in biological systems (CEBS) knowledge base [J]. Environmental Health Perspectives, 2003, 111(6): 811-824. doi: 10.1289/ehp.5971
|
[14] |
KITANO H. Systems biology: A brief overview [J]. Science, 2002, 295(5560): 1662-1664. doi: 10.1126/science.1069492
|
[15] |
WATERS M D, FOSTEL J M. Toxicogenomics and systems toxicology: aims and prospects [J]. Nature Reviews Genetics, 2004, 5(12): 936-948. doi: 10.1038/nrg1493
|
[16] |
HARTUNG T, VLIET E, JAWORSKA J, et al. Food for thought [J]. Systems Toxicology ALTEX, 2012, 29: 119-128.
|
[17] |
PLANT N J. An introduction to systems toxicology [J]. Toxicology Research, 2015, 4: 9-22. doi: 10.1039/C4TX00058G
|
[18] |
李杰, 李柯佳, 张臣, 等. 计算系统毒理学: 形成、发展及应用 [J]. 科学通报, 2015, 60(19): 1751-1760. doi: 10.1360/N972014-01400
LI J, LI K J, ZHANG C, et al. Computational systems toxicology: Emergence, development and application [J]. Chinese Science Bulletin, 2015, 60(19): 1751-1760(in Chinese). doi: 10.1360/N972014-01400
|
[19] |
QUINN R A, MELNIK A V, VRBANAC A, et al. Global chemical effects of the microbiome include new bile-acid conjugations [J]. Nature, 2020, 579: 123-129. doi: 10.1038/s41586-020-2047-9
|
[20] |
KIMURA I, MIYAMOTO J, KITANO R O, et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice [J]. Science, 2020, 367(6481): 8429. doi: 10.1126/science.aaw8429
|
[21] |
KREWSKI D, JR. A D, ANDERSEN M, et al. Toxicity testing in the 21st century: A vision and a strategy [J]. Journal Toxicology Environmental Health-Part B-Critical Reviews, 2010, 13: 51-138. doi: 10.1080/10937404.2010.483176
|
[22] |
ZHANG Q, BHATTACHARYA S, ANDERSEN M E, et al. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing [J]. Journal of Toxicology and Environmental Health, Part B:Critical Reviews, 2010, 13(2-4): 253-276. doi: 10.1080/10937404.2010.483943
|
[23] |
ZHANG Q, BHATTACHARYA S, CONOLLY R B, et al. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses [J]. Environmental Health Perspectives, 2014, 122(12): 61-70.
|
[24] |
SHAO Z M, WANG K K, ZHANG S Y, et al. Ingenuity pathway analysis of differentially expressed genes involved in signaling pathways and molecular networks in RhoE gene-edited cardiomyocytes [J]. International Journal of Molecular Medicine, 2020, 46(3): 1225-1238. doi: 10.3892/ijmm.2020.4661
|
[25] |
KANEHISA M, GOTO S, FURUMICHI M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs [J]. Nucleic Acids Research, 2010, 28(Suppl_1): 355-360.
|
[26] |
ZHANG Y J, LIN H F, YANG Z H, et al. A method for predicting protein complex in dynamic PPI networks [J]. BMC Bioinformatics, 2016, 17(7): 229.
|
[27] |
MANIPUR I, GRANATA I, MADDALENA L, et al. Clustering analysis of tumor metabolic networks [J]. BMC Bioinformatics, 2020, 21: 349. doi: 10.1186/s12859-020-03564-9
|
[28] |
BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks [EB/OL]. [2021-5-15]. arXiv preprint, 2018,https://export.arxiv.org/pdf/1806.01261.
|
[29] |
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks [J]. Genome Research, 2003, 13: 2498-2504. doi: 10.1101/gr.1239303
|
[30] |
BATAGELJ V, MRVAR A. Pajek-program for large network analysis [J]. Connections, 1998, 21: 47-57.
|
[31] |
JAN S, ANNE C G. SnapShot: protein-protein interaction networks [J]. Cell, 2011, 144(6): 1000-1001. doi: 10.1016/j.cell.2011.02.025
|
[32] |
JOERG M, AMITABH S, MAKSIM K, et al. Uncovering disease-disease relationships through the incomplete interactome [J]. Science, 2015, 347(6224): 1257601. doi: 10.1126/science.1257601
|
[33] |
KARINE A, PHILIPPE G. Application of computational systems biology to explore environmental toxicity hazards [J]. Environmental Health Perspectives, 2011, 119(12): 1754-1759. doi: 10.1289/ehp.1103533
|
[34] |
DAI W N, TANG T T, DAI Z H, et al. Probing the mechanism of hepatotoxicity of hexabromocyclododecanes through toxicological network analysis [J]. Environmental Science & Technology, 2020, 54(23): 15235-15245.
|
[35] |
GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks [EB/OL]. [2021-5-15]. arXiv preprint, 2016, https://cs.stanford.edu/people/jure/pubs/node2vec-kdd16.pdf.
|
[36] |
FIGUEIREDO D R, RIBEIRO L F R, SAVERESE P H P. Struc2vec: Learning node representations from structural identity [EB/OL]. [2021-5-15]. arXiv preprint, 2017, https://export.arxiv.org/pdf/1704.03165.
|
[37] |
SEJNOWSKI T J. The unreasonable effectiveness of deep learning in artificial intelligence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30033-30038.
|
[38] |
XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks [EB/OL]. [2021-5-15]. arXiv preprint, 2018, https://export.arxiv.org/pdf/1810.00826.
|
[39] |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs [EB/OL]. [2021-5-15]. arXiv preprint, 2013,https://arxiv.org/pdf/1312.6203.pdf.
|
[40] |
LIU Q, HU Z Q, JIANG R, et al. DeepCDR: A hybrid graph convolutional network for predicting cancer drug response [J]. Bioinformatics, 2020, 26(Supplement_2): 911-918.
|
[41] |
ZHANG F, WANG M H, XI J N, et al. A novel heterogeneous network-based method for drug response prediction in cancer cell lines [J]. Scientific Reports, 2018, 8: 3355. doi: 10.1038/s41598-018-21622-4
|
[42] |
SCHAFF J, FINK C, SLEPCHENKO B, et al. A general computational framework for modeling cellular structure and function [J]. Biophysical Journal, 1997, 73(3): 1135-1146. doi: 10.1016/S0006-3495(97)78146-3
|
[43] |
YAHYA F A, HASHIM N F, ALI D A I, et al. A brief overview to systems biology in toxicology:The journey from in to vivo, in-vitro and -omics [J]. Journal of King Saud University-Science, 2020, 33(1): 101254.
|
[44] |
KRISTIN S, BEAT B F, DANIELLE J M, et al. Transcriptomics in ecotoxicology [J]. Analytical and Bioanalytical Chemistry, 2010, 397(3): 917-923. doi: 10.1007/s00216-010-3662-3
|
[45] |
LANGFELDER P, HORVATH S. WGCNA: An package for weighted correlation network analysis [J]. BMC Bioinformatics, 2008, 9(559): 1471-2105.
|
[46] |
TIAN Z L, HE W X, TANG J N, et al. Identification of important modules and biomarkers in breast cancer based on WGCNA [J]. OncoTargets and Therapy, 2020, 13: 6805-6817. doi: 10.2147/OTT.S258439
|
[47] |
陈铭. 生物信息学(第3版)[M]. 北京: 科学出版社, 2018, 118-121.
CHEN M. Bioinformatics (Third Edition) [M]. Beijing: Science Press, 2018, 118-121(in Chinese).
|
[48] |
KANEHISA M, FURUMICHI M, TANABE M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs [J]. Nucleic Acids Research, 2016, 45(D1): 353-361.
|
[49] |
OBERHARDT M A, PUCHAIKA J, MARTINS V A P, et al. Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis [J]. PLOS Computational Biology, 2011, 7(3): 1001116. doi: 10.1371/journal.pcbi.1001116
|
[50] |
PITKÄNEN E, JOUHTEN P, HOU J, et al. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species [J]. PLOS Computational Biology, 2014, 10(2): 1003465. doi: 10.1371/journal.pcbi.1003465
|
[51] |
KARLSEN E, SCHULZ C, ALMAAS E. Automated generation of genome-scale metabolic draft reconstructions based on KEGG [J]. BMC Bioinformatics, 2018, 19: 467. doi: 10.1186/s12859-018-2472-z
|
[52] |
KRÄMER A, GREEN J, POLLARD J, et al. Causal analysis approaches in ingenuity pathway analysis [J]. Bioinformatics, 2014, 30(4): 523-530. doi: 10.1093/bioinformatics/btt703
|
[53] |
YUAN Y, JOSEPH Z B. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data [J]. Genome Biology, 2020, 21: 200. doi: 10.1186/s13059-020-02088-y
|
[54] |
WILKINS M R, SANCHEZ J C, GOOLEY A, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it [J]. Biotechnology and Genetic Engineering Reviews, 1996, 13(1): 19-50. doi: 10.1080/02648725.1996.10647923
|
[55] |
LEONIDAS G A, JULIO S R, BENJAMIN D C, et al. Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes [J]. Molecular & Cellular Proteomics, 2010, 9(9): 1849-1865.
|
[56] |
BOLTZ T A, DEVKOTA P, WUCHTY S. Collective influencers in protein interaction networks [J]. Scientific Reports, 2019, 9: 3948. doi: 10.1038/s41598-019-40410-2
|
[57] |
RAMIREZ T, DANESHIAN M, KAMP H, et al. Metabolomics in toxicology and preclinical research [J]. ALTEX-Alternatives to Animal Experimentation, 2013, 30(2): 209-225.
|
[58] |
LEONARDO D S, SALEH A, YARIV B, et al. Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation [J]. Expert Review of Proteomics, 2020, 17(4): 243-255. doi: 10.1080/14789450.2020.1766975
|
[59] |
LI X K, YANG H J, XIAO J C, et al. Network pharmacology-based investigation into the bioactive compounds and molecular mechanisms of schisandrae chinensis fructus against drug-induced liver injury [J]. Bio-organic Chemistry, 2020, 96: 103553.
|
[60] |
LI X K, LI M Y, DENG S, et al. A network pharmacology-integrated metabolomics strategy for clarifying the action mechanisms of schisandrae chinensis fructus for treating drug-induced liver injury by acetaminophen [J]. Bio-organic & Medicinal Chemistry, 2021, 31: 115992.
|
[61] |
WILD P C. Complementing the genome with an "Exposome":The outstanding challenge of environmental exposure measurement in molecular epidemiology [J]. Cancer Epidemiology Biomarkers & Prevention, 2005, 14(8): 1847-1850.
|
[62] |
CHAKRAVARTI A, LITTLE P. Nature, nurture and human disease [J]. Nature, 2003, 421: 412-414. doi: 10.1038/nature01401
|
[63] |
RAPPAPORT S M. Discovering environmental causes of disease [J]. Journal of Epidemiology and Community Health, 2012, 66(2): 99-102. doi: 10.1136/jech-2011-200726
|
[64] |
KALLOO G, WELLENIUS G A, MCCANDLESS L, et al. Profiles and predictors of environmental chemical mixture exposure among pregnant women: the health outcomes and measures of the environment study [J]. Environmental Science & Technology, 2018, 52(17): 10104-10113.
|
[65] |
CHEN H, ZHANG W X, ZHOU Y Q, et al. Characteristics of exposure to multiple environmental chemicals among pregnant women in Wuhan, China [J]. Science of the Total Environment, 2021, 754: 142167. doi: 10.1016/j.scitotenv.2020.142167
|
[66] |
ROBINSON O, BASAGANA X, AGIER L, et al. The pregnancy exposome: multiple environmental exposures in the inma-sabadell birth cohort [J]. Environmental Science & Technology, 2015, 49(17): 10632-10641.
|
[67] |
VINCENT B, RUTHANN A R. Mapping the human exposome to uncover the causes of breast cancer [J]. International Journal of Environmental Research and Public Health, 2020, 17(1): 189.
|
[68] |
RUIZ C, ZITNIK M, LESKOVEC J. Identification of disease treatment mechanisms through the multiscale interactome [J]. Nature Communications, 2021, 12: 1796. doi: 10.1038/s41467-021-21770-8
|
[69] |
LIU X M, ENRICO M, ARDA H, et al. Robustness and lethality in multilayer biological molecular networks [J]. Nature Communications, 2020, 11: 6043. doi: 10.1038/s41467-020-19841-3
|
[70] |
STEAD W. Clinical implications and challenges of artificial intelligence and deep learning [J]. JAMA, 2018, 320(11): 1107-1108. doi: 10.1001/jama.2018.11029
|
[71] |
SUN M Y, ZHAO S D, GILVARY C, et al. Graph convolutional networks for computational drug development and discovery [J]. Briefings in Bioinformatics, 2019, 21(3): 919-935.
|
[72] |
TANG W, CHEN J W, WANG Z Y, et al. Deep learning for predicting toxicity of chemicals: A mini review [J]. Journal of Environmental Science and Health Part C- Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36(4): 252-271.
|
[73] |
ZHANG Z, CUI P, ZHU W. Deep learning on graphs: A survey [EB/OL]. [2021-5-15]. arXiv Preprint, 2018, https://export.arxiv.org/pdf/1812.04202.
|
[74] |
ZHOU J, CUI G, ZHANG Z. Graph neural networks: A review of methods and applications [EB/OL]. [2021-5-15]. arXiv preprint, 2019, https://export.arxiv.org/ftp/arxiv/papers/1812/1812.08434.pdf.
|
[75] |
GILMER J, SCHOENHOLZ S, RILEY P F, et al. Neural message passing for quantum chemistry [EB/OL]. [2021-5-15]. arXiv preprint, 2017, https://www.ics.uci.edu/~mohamadt/papers/Neural_message_passing.pdf.
|
[76] |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs [EB/OL]. [2021-5-15]. arXiv preprint, 2017, https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf.
|
[77] |
ATWOOD J, TOWSLEY D. Diffusion-convolutional neural networks [EB/OL]. [2021-5-15]. arXiv preprint, 2015, https://papers.nips.cc/paper/2016/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf.
|
[78] |
NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs [EB/OL]. [2021-5-15]. arXiv preprint, 2016, http://proceedings.mlr.press/v48/niepert16.pdf.
|
[79] |
KRIZHEVSKY A, SUTSKEVER L, HINTON G E. ImageNet classification with deep convolutional neural networks[C]. In Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012, 1: 1097-1105.
|
[80] |
ALLEN T E H, GOODMAN J M, GUTSELL S, et al. Defining molecular initiating events in the adverse outcome pathway framework for risk assessment [J]. Chemical Research in Toxicology, 2014, 27(12): 2100-2112. doi: 10.1021/tx500345j
|
[81] |
ANKLEY G T, BENNETT R S, ERICKSON R J, et al. Adverse Outcome Pathways: A conceptual framework to support ecotoxicology research and risk assessment [J]. Environmental Toxicology and Chemistry, 2010, 29(3): 730-741. doi: 10.1002/etc.34
|
[82] |
KREWSKI D, ANDERSEN M E, TYSHENKO M G, et al. Toxicity testing in the 21st century: Progress in the past decade and future perspectives [J]. Archives of Toxicology, 2020, 94(1): 1-58. doi: 10.1007/s00204-019-02613-4
|
[83] |
CHEN S, ZHANG Z H, QING T, et al. Activation of the Nrf2 signaling pathway in Usnic Acid-induced toxicity in HepG2 cells [J]. Archives of Toxicology, 2017, 91: 1293-1307. doi: 10.1007/s00204-016-1775-y
|
[84] |
LIU L, WU F Y, ZHU C Y, et al. Involvement of dopamine signaling pathway in neurodevelopmental toxicity induced by isoniazid in zebrafish [J]. Chemosphere, 2021, 265: 129109. doi: 10.1016/j.chemosphere.2020.129109
|
[85] |
DREIER D A, DANIELLE F M, JOEL N M, et al. Linking mitochondrial dysfunction to organismal and population health in the context of environmental pollutants: Progress and considerations for mitochondrial adverse outcome pathways [J]. Environmental Toxicology and Chemistry, 2019, 38(8): 1625-1634.
|
[86] |
SKARDING J, GABRYS B, MUSIAL K. Foundations and modelling of dynamic networks using dynamic graph neural networks: A survey [EB/OL]. [2021-5-15]. arXiv preprint, 2020, https://export.arxiv.org/pdf/2005.07496.
|