[1] LOVLEY D R, PHILLIPS E J P. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese [J]. Applied & Environmental Microbiology, 1988, 54(6): 1472-1480.
[2] MYERS C R , NEALSON K H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor [J]. Science, 1988, 240(4857): 1319-1321. doi: 10.1126/science.240.4857.1319
[3] XIAO X , YU H Q. Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria [J]. Current Opinion in Chemical Biology, 2020, 59: 104-110. doi: 10.1016/j.cbpa.2020.06.006
[4] LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive microorganisms in bioelectrochemical systems [J]. Nature Reviews. Microbiology, 2019, 17(5): 307-319. doi: 10.1038/s41579-019-0173-x
[5] SHI L, DONG H, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals [J]. Nature Reviews Microbiology, 2016, 14(10): 651-662. doi: 10.1038/nrmicro.2016.93
[6] LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science, 2012, 337(6095): 686-690. doi: 10.1126/science.1217412
[7] ZHENG Y, WANG H, LIU Y, et al. Methane-dependent mineral reduction by aerobic methanotrophs under hypoxia [J]. Environmental Science & Technology Letters, 2020, 7(8): 606-612.
[8] LOVLEY D R. Electromicrobiology [J]. Annual Review of Microbiology, 2012, 66: 391-409. doi: 10.1146/annurev-micro-092611-150104
[9] KAPPLER A, BRYCE C, MANSOR M, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19: 360-374.
[10] GRALNICK J A, VALI H, LIES D P, et al. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12): 4669-4674. doi: 10.1073/pnas.0505959103
[11] WOOD J M, WANG H K. Microbial resistance to heavy metals [J]. Environmental Science & Technology, 1983, 17(12): 582-590.
[12] LUAN F B, BURGOS W D, XIE L, et al. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32 [J]. Environmental Science & Technology, 2010, 44(1): 184-190.
[13] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: Methodology and technology [J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.
[14] JIANG D , LI B. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): A design suitable for large-scale wastewater treatment processes [J]. Biochemical Engineering Journal, 2009, 47(1-3): 31-37. doi: 10.1016/j.bej.2009.06.013
[15] ZHANG P, ZHENG S L, LIU J, et al. Surface properties of activated sludge-derived biochar determine the facilitating effects on Geobacter co-cultures [J]. Water Research, 2018, 142: 441-451. doi: 10.1016/j.watres.2018.05.058
[16] ANTAL M J , GRONLI M. The art, science, and technology of charcoal production [J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619-1640.
[17] QIU L, DENG Y F, WANG F, et al. A review on biochar-mediated anaerobic digestion with enhanced methane recovery [J]. Renewable & Sustainable Energy Reviews, 2019, 115: 14.
[18] SUN T R, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon [J]. Nature Communications, 2017, 8: 14873. doi: 10.1038/ncomms14873
[19] CHACÓN F J, CAYUELA M L, ROIG A, et al. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications [J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(4): 695-715. doi: 10.1007/s11157-017-9450-1
[20] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals [J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344.
[21] XU X, HUANG H, ZHANG Y, et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption [J]. Environmental Pollution, 2019, 244: 423-430. doi: 10.1016/j.envpol.2018.10.068
[22] SCHIEVANO A, BERENGUER R, GOGLIO A, et al. Electroactive biochar for large-scale environmental applications of microbial electrochemistry [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18198-18212.
[23] YAO Y, GAO B, INYANG M, et al. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential [J]. Bioresource Technology, 2011, 102(10): 6273-6278. doi: 10.1016/j.biortech.2011.03.006
[24] CHAUDHURI, S K and LOVLEY D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J]. Nature Biotechnology, 2003, 21(10): 1229-1232. doi: 10.1038/nbt867
[25] YU L P, WANG Y Q, YUAN Y, et al. Biochar as electron acceptor for microbial extracellular respiration [J]. Geomicrobiology Journal, 2016, 33(6): 530-536. doi: 10.1080/01490451.2015.1062060
[26] GASIOROWSKI J Z, MURPHY C J, NEALEY P F. Biophysical cues and cell behavior: the big impact of little things [J]. Annual Review of Biomedical Engineering, 2013, 15: 155-176. doi: 10.1146/annurev-bioeng-071811-150021
[27] CHEN W Q, WENG S N, ZHANG F, et al. Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies [J]. ACS Nano, 2013, 7(1): 566-575. doi: 10.1021/nn304719q
[28] YAN F F, HE Y R, WU C, et al. Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1 [J]. Environmental Science & Technology Letters, 2014, 1(1): 128-132.
[29] WANG J X, LI M X, SHI Z J, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes [J]. Analytical Chemistry, 2002, 74(9): 1993-1997. doi: 10.1021/ac010978u
[30] XIE X, HU L B, PASTA M, et al. Three-dimensional carbon Nanotube−Textile anode for high-performance microbial fuel cells [J]. Nano Letters, 2011, 11(1): 291-296. doi: 10.1021/nl103905t
[31] XIE X, MENG Y, HU L B, et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes [J]. Energy Environ. Sci., 2012, 5(1): 5265-5270. doi: 10.1039/C1EE02122B
[32] XIE X, ZHAO W T, LEE H R, et al. Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: Crinkling of carbon nanotube films to create subcellular ridges [J]. ACS Nano, 2014, 8(12): 11958-11965. doi: 10.1021/nn504898p
[33] LI Z, XIONG W, DE VILLERS B J T, et al. Extracellular electron transfer across bio-nano interfaces for CO2 electroreduction [J]. Nanoscale, 2021, 13(2): 1093-1102. doi: 10.1039/D0NR07611B
[34] WANG G M, QIAN F, SALTIKOV C W, et al. Microbial reduction of graphene oxide by Shewanella [J]. Nano Research, 2011, 4(6): 563-570. doi: 10.1007/s12274-011-0112-2
[35] IGARASHI K, MIYAKO E, KATO S. Direct interspecies electron transfer mediated by graphene oxide-based materials [J]. Frontiers in Microbiology, 2019, 10: 3068.
[36] TANG J, CHEN S, YUAN Y, et al. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells [J]. Biosensors and Bioelectronics, 2015, 71: 387-395. doi: 10.1016/j.bios.2015.04.074
[37] LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells [J]. Bioresource Technology, 2012, 114: 275-280. doi: 10.1016/j.biortech.2012.02.116
[38] 鲁安怀, 王长秋, 李艳, 环境矿物学研究进展(2011—2020年)[J]. 矿物岩石地球化学通报, 2020, 39(5): 881-898, 1068. LU A, WANG C, LI Y. Ressearch progress of environmental mineralogy (2011—2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(5): 881-898, 1068. (in Chinese).
[39] LOVLEY D R, STOLZ J F, NORD G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism [J]. Nature, 1987, 330(6145): 252-254. doi: 10.1038/330252a0
[40] LOVLEY D R, CHAPELLE F H, PHILLIPS E J P. Fe(Ⅲ)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain [J]. Geology, 1990, 18(10): 954-957. doi: 10.1130/0091-7613(1990)018<0954:FIRBID>2.3.CO;2
[41] PIRBADIAN S, BARCHINGER S E, LEUNG K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12883-12888. doi: 10.1073/pnas.1410551111
[42] TAN Y, ADHIKARI R Y, MALVANKAR N S, et al. The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter [J]. Frontiers in Microbiology, 2016, 7: 980-990.
[43] CHEN L X, CAO C L, WANG S H, et al. Electron communication of Bacillus subtilis in harsh environments [J]. Science, 2019, 12: 260-269. doi: 10.1016/j.isci.2019.01.020
[44] LIU J C, PEARCE I, SHI L, et al. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1 [J]. Geochimica et Cosmochimica Acta, 2016, 193: 160-175. doi: 10.1016/j.gca.2016.08.022
[45] LOVLEY D R, PHILLIPS E J P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments [J]. Applied and Environmental Microbiology, 1986, 51(4): 683-689. doi: 10.1128/aem.51.4.683-689.1986
[46] WU T, KUKKADAPU R K, GRIFFIN A M, et al. Interactions between Fe(Ⅲ)-oxides and Fe(Ⅲ)-phyllosilicates during microbial reduction 1: synthetic sediments [J]. Geomicrobiology Journal, 2016, 33(9): 793-806. doi: 10.1080/01490451.2015.1117546
[47] WU T, GRIFFIN A M, GORSKI C A, et al. Interactions between Fe(Ⅲ)-oxides and Fe(Ⅲ)-phyllosilicates during microbial reduction 2: Natural subsurface sediments [J]. Geomicrobiology Journal, 2017, 34(3): 231-241. doi: 10.1080/01490451.2016.1174758
[48] LOVLEY D R, PHILLIPS E J P. Availability of ferric iron for microbial reductionin bottom sediments of the freshwater tidal potomac river [J]. Applied and Environmental Microbiology, 1986, 52(4): 751-757. doi: 10.1128/aem.52.4.751-757.1986
[49] JAISI D P, DONG H L, LIU C X. Influence of biogenic Fe(Ⅱ) on the extent of microbial reduction of Fe(Ⅲ) in clay minerals nontronite, illite, and chlorite [J]. Geochimica Et Cosmochimica Acta, 2007, 71(5): 1145-1158. doi: 10.1016/j.gca.2006.11.027
[50] MIOT J, BENZERARA K, MORIN G, et a. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria [J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 696-711. doi: 10.1016/j.gca.2008.10.033
[51] CUTTING R S, COKER V S, FELLOWES J W, et al. Mineralogical and morphological constraints on the reduction of Fe(Ⅲ) minerals by Geobacter sulfurreducens [J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4004-4022. doi: 10.1016/j.gca.2009.04.009
[52] AEPPLI M, VRANIC S, KAEGI R, et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite [J]. Environmental Science & Technology, 2019, 53(15): 8736-8746.
[53] NAKAMURA R, KAI F, OKAMOTO A, et al. Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides [J]. Journal of Materials Chemistry A, 2013, 1(16): 5148-5157. doi: 10.1039/c3ta01672b
[54] 朱朝菊, 向文军, 罗和青, 等. 铝掺杂针铁矿的制备、表征及吸附氟的特性 [J]. 无机化学学报, 2017, 33(12): 2215-2224. doi: 10.11862/CJIC.2017.266 ZHU Z J, XIANG W J, LUO H Q, et al. Preparation, characterization and fluoride adsorption characteristics of goethite and Al-doped goethite [J]. Chinese Journal of Inorganic Chemistry, 2017, 33(12): 2215-2224(in Chinese). doi: 10.11862/CJIC.2017.266
[55] 贾小红, 王甫, 任燕, 等. SO2、NO2与针铁矿、赤铁矿、磁铁矿的非均相反应 [J]. 地球化学, 2021, 50(1): 88-97. JIA X, WANG F, REN Y, et al. Heterogeneous reactions of SO2 and NO2 with goethite, hematite, and magnetite [J]. Geochimica, 2021, 50(1): 88-97(in Chinese).
[56] 向文军, 朱朝菊, 魏世勇. 几种赤铁矿的制备、表征及其对氟的吸附性能研究 [J]. 化学研究与应用, 2018, 30(2): 290-296. XIANG W, ZHU Z, WEI S Y. Preparation, characterization and fluoride adsorption characteristics of three hematite samples [J]. Chemical Research and Application, 2018, 30(2): 290-296(in Chinese).
[57] 方敦, 王锐, 许海娟, 等. 硅/铝掺杂纤铁矿的表面性质及对F-的吸附性能 [J]. 环境污染与防治, 2020, 42(3): 287-292. FANG D, WANG R, XU H J, et al. The surface properties and adsorption performance for F- of Si-or Al-doped lepidocrocite [J]. Environmental Pollution and Control, 2020, 42(3): 287-292(in Chinese).
[58] YU G, FU F, YE C, et al. Behaviors and fate of adsorbed Cr(VI) during Fe(II)-induced transformation of ferrihydrite-humic acid co-precipitates [J]. Journal of Hazardous Materials, 2020, 392: 122272. doi: 10.1016/j.jhazmat.2020.122272
[59] BIRD L J, BONNEFOY V, NEWMAN D K. Bioenergetic challenges of microbial iron metabolisms [J]. Trends in Microbiology, 2011, 19(7): 330-340. doi: 10.1016/j.tim.2011.05.001
[60] LOVLEY D R, GIOVANNONI S J, WHITE D C, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals [J]. Archives of Microbiology, 1993, 159(4): 336-344. doi: 10.1007/BF00290916
[61] MARSHALL M J, BELIAEV A S, DOHNALKOVA A C, et al. c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis [J]. PLoS Biology, 2006, 4(8): 1324-1333.
[62] LOVLEY D R, PHILLIPS E J P, WIDMAN P K. Reduction of uranium by Desulfovibrio desulfuricans [J]. Applied and Environmental Microbiology, 1992, 58(3): 850-856. doi: 10.1128/aem.58.3.850-856.1992
[63] VELZEN L V. Environmental remediation and restoration of contaminated nuclear and norm sites[M]. America: Woodhead Publishing 2015: 185-236.
[64] COLOGGI D L, LAMPA-PASTIRK S, SPEERS A M, et al. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism [J]. Proc Natl Acad Sci U S A, 2011, 108(37): 15248-15252. doi: 10.1073/pnas.1108616108
[65] DUMMI MAHADEVAN G, ZHAO F. A concise review on microbial remediation cells (MRCs) in soil and groundwater radionuclides remediation [J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(3): 1477-1485. doi: 10.1007/s10967-017-5612-4
[66] SUZUKI Y, KITATSUJI Y, OHNUKI T, et al. Flavin mononucleotide mediated electron pathway for microbial U(VI) reduction [J]. Physical Chemistry Chemical Physics, 2010, 12(34): 10081-10087. doi: 10.1039/c0cp00339e
[67] YAMASAKI S, TANAKA K, KOZAI N, et al. Effect of flavin compounds on uranium(VI) reduction- kinetic study using electrochemical methods with UV-vis spectroscopy [J]. Applied Geochemistry, 2017, 78: 279-286. doi: 10.1016/j.apgeochem.2017.01.014
[68] SUN, H, SUN G Q, WANG S L, et al. Pd electroless plated Nafion(R) membrane for high concentration DMFCs [J]. Journal of Membrane Science, 2005, 259(1a2): 27-33.
[69] HINDATU Y, ANNUAR M S M, GUMEL A M. Mini-review: Anode modification for improved performance of microbial fuel cell [J]. Renewable and Sustainable Energy Reviews, 2017, 73: 236-248. doi: 10.1016/j.rser.2017.01.138
[70] ZHU X, LOGAN B E. Copper anode corrosion affects power generation in microbial fuel cells [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(3): 471-474.
[71] HOU J Z, LIU S, YANG, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells [J]. Journal of Power Sources, 2014, 258: 204-209. doi: 10.1016/j.jpowsour.2014.02.035
[72] LI Y, XU D, CHEN C, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. Journal of Materials Science & Technology, 2018, 34(10): 1713-1718.
[73] SHERAR B W A, POWER I M, KEECH P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corrosion Science, 2011, 53(3): 955-960. doi: 10.1016/j.corsci.2010.11.027
[74] JIA R, YANG D, XU D, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38-46. doi: 10.1016/j.bioelechem.2017.06.013
[75] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7367): 49-56. doi: 10.1038/nature10386
[76] 蔡茜茜, 袁勇, 胡佩, 等. 腐殖质电化学特性及其介导的胞外电子传递研究进展 [J]. 应用与环境生物学报, 2015, 21(6): 996-1002. CAI X X, YUAN Y, HU P, et al. Progress in study of humic substances: Electrochemical redox characterization and extracellular respiration [J]. Chinese Journal of Applied & Environmental Biology, 2015, 21(6): 996-1002(in Chinese).
[77] ZHENG Y, KAPPLER A, XIAO Y, et al. Redox-active humics support interspecies syntrophy and shift microbial community [J]. Science China Technological Sciences, 2019, 62(10): 1695-1702. doi: 10.1007/s11431-018-9360-5
[78] NEWMAN D K and KOLTER R. A role for excreted quinones in extracellular electron transfer [J]. Nature, 2000, 405(6782): 94-97. doi: 10.1038/35011098
[79] BAI Y G, MELLAGE A, CIRPKA O A, et al. AQDS and redox-active NOM enables microbial Fe(Ⅲ)-mineral reduction at cm-scales [J]. Environmental Science & Technology, 2020, 54(7): 4131-4139.
[80] SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environmental Science & Technology, 1998, 32(19): 2984-2989.
[81] NURMI J T and TRATNYEK P G. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles [J]. Environmental Science & Technology, 2002, 36(4): 617-624.
[82] CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter [J]. Environmental Science & Technology, 2005, 39(21): 8142-8149.
[83] HERNáNDEZ-MONTOYA V, ALVAREZ L H, MONTES-MORáN M A, et al. Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens [J]. Geoderma, 2012, 183-184: 25-31. doi: 10.1016/j.geoderma.2012.03.007
[84] TAN W, WANG G, ZHAO X, et al. Molecular‐weight‐dependent redox cycling of humic substances of paddy soils over successive anoxic and oxic alternations [J]. Land Degradation & Development, 2019, 30(9): 1130-1144.
[85] KAPPLER A, BENZ M, SCHINK B, et al. Electron shuttling via humic acids in microbial iron(Ⅲ) reduction in a freshwater sediment [J]. FEMS Microbiology Ecology, 2004, 47(1): 85-92. doi: 10.1016/S0168-6496(03)00245-9
[86] RODEN E E, KAPPLER A, BAUER I, et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances [J]. Nature Geoscience, 2010, 3(6): 417-421. doi: 10.1038/ngeo870
[87] LAU M P, SANDER M, GELBRECHT J, et al. Solid phases as important electron acceptors in freshwater organic sediments [J]. Biogeochemistry, 2015, 123(1-2): 49-61. doi: 10.1007/s10533-014-0052-5
[88] TAN W, XI B, WANG G, et al. Microbial-accessibility-dependent electron shuttling of in situ solid-phase organic matter in soils [J]. Geoderma, 2019, 338: 1-4. doi: 10.1016/j.geoderma.2018.11.037
[89] KLüPFEL L, PIEPENBROCK A, KAPPLER A, et al. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments [J]. Nature Geoscience, 2014, 7(3): 195-200. doi: 10.1038/ngeo2084
[90] ZHAO J L, WANG L, TANG L L, et al. Changes in bacterial community structure and humic acid composition in response to enhanced extracellular electron transfer process in coastal sediment [J]. Archives of Microbiology, 2019, 201(7): 897-906. doi: 10.1007/s00203-019-01659-3
[91] ZHANG D D, ZHANG C F, ZHILING L, et al. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization [J]. Bioresource Technology, 2014, 164: 232-240. doi: 10.1016/j.biortech.2014.04.071
[92] PANKRATOVA G, PANKRATOV D, et al. Following nature: Bioinspired mediation strategy for gram-positive bacterial cells [J]. Advanced Energy Materials, 2019, 9(16): 1900215.1-1900215.6.
[93] NISHIO K, NAKAMURA R, LIN X J, et al. Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox-active polymer [J]. Chemphyschem, 2013, 14(10): 2159-2163. doi: 10.1002/cphc.201300117
[94] KANEKO M, ISHIKAWA M, SONG J, et al. Cathodic supply of electrons to living microbial cells via cytocompatible redox-active polymers [J]. Electrochemistry Communications, 2017, 75: 17-20. doi: 10.1016/j.elecom.2016.12.002
[95] HASAN K, PATIL S A, LEECH D, et al. Electrochemical communication between microbial cells and electrodes via osmium redox systems [J]. Biochemical Society Transactions, 2012, 40(6): 1330-1335. doi: 10.1042/BST20120120
[96] PATIL S A, HASAN K, LEECH D, et al. Improved microbial electrocatalysis with osmium polymer modified electrodes [J]. Chemical Communications, 2012, 48(82): 10183-10185. doi: 10.1039/c2cc34903e
[97] GIROUD F, MILTON R D, TAN B X, et al. Simplifying enzymatic biofuel cells: Immobilized naphthoquinone as a biocathodic orientational moiety and bioanodic electron mediator [J]. ACS Catalysis, 2015, 5(2): 1240-1244. doi: 10.1021/cs501940g
[98] HASAN K, GRATTIERI M, WANG T, et al. Enhanced bioelectrocatalysis of Shewanella oneidensis MR-1 by a naphthoquinone redox polymer [J]. ACS Energy Letters, 2017, 2(9): 1947-1951. doi: 10.1021/acsenergylett.7b00585
[99] WANG G , FENG C. Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell [J]. Polymers, 2017, 9(12): 220. doi: 10.3390/polym9060220
[100] WU W, NIU H, YANG D, et al. Polyaniline/carbon nanotubes composite modified anode via graft polymerization and self-assembling for microbial fuel cells [J]. Polymers, 2018, 10(7): 759. doi: 10.3390/polym10070759
[101] SUMISHA A , HARIBABU K. Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study [J]. International Journal of Hydrogen Energy, 2018, 43(6): 3308-3316. doi: 10.1016/j.ijhydene.2017.12.175
[102] RAJENDRAN R, DHAKSHINA MOORTHY G P, KRISHNAN H, et al. A study on polythiophene modified carbon cloth as anode in microbial fuel cell for lead removal [J]. Arabian Journal for Science and Engineering, 2021: 1-7.
[103] SONG R B, WU Y C, LIN Z Q, et al. Living and conducting: Coating individual bacterial cells with In Situ formed polypyrrole [J]. Angewandte Chemie (International Ed. in English), 2017, 56(35): 10516-10520. doi: 10.1002/anie.201704729
[104] KANEKO M, ISHIHARA K, NAKANISHI S. Redox-active polymers connecting living microbial cells to an extracellular electrical circuit [J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(34): e2001849. doi: 10.1002/smll.202001849
[105] LIU D F, MIN D, CHENG L, et al. Anaerobic reduction of 2, 6-dinitrotoluene by Shewanella oneidensis MR-1: Roles of Mtr respiratory pathway and NfnB [J]. Biotechnology and Bioengineering, 2017, 114(4): 761-768. doi: 10.1002/bit.26212
[106] WANG H F, ZHAO H P, ZHU L Z. Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants [J]. Journal of Hazardous Materials, 2020, 384: 121495. doi: 10.1016/j.jhazmat.2019.121495
[107] SUNG Y, FLETCHER K E, RITALAHTI K M, et al. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium [J]. Applied and Environmental Microbiology, 2006, 72(4): 2775-2782. doi: 10.1128/AEM.72.4.2775-2782.2006
[108] AMOS B K, SUNG Y, FLETCHER K E, et al. Detection and quantification of Geobacter lovleyi strain SZ: implications for bioremediation at tetrachloroethene- and uranium-impacted sites [J]. Applied and Environmental Microbiology, 2007, 73(21): 6898-6904. doi: 10.1128/AEM.01218-07
[109] WAGNER D D, HUG L A, HATT J K, et al. Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae [J]. BMC Genomics, 2012, 13(1): 200. doi: 10.1186/1471-2164-13-200
[110] ZHANG J, LI J, YE D, et al. Tubular bamboo charcoal for anode in microbial fuel cells [J]. Journal of Power Sources, 2014, 272: 277-282. doi: 10.1016/j.jpowsour.2014.08.115
[111] HSU L H H, DENG P, ZHANG Y X, et al. Nanostructured interfaces for probing and facilitating extracellular electron transfer [J]. Journal of Materials Chemistry. B, 2018, 6(44): 7144-7158. doi: 10.1039/C8TB01598H
[112] WANG L, SU L, CHEN H, et al. Carbon paper electrode modified by goethite nanowhiskers promotes bacterial extracellular electron transfer [J]. Materials Letters, 2015, 141(feba15): 311-314.
[113] DING Q, CAO Y, LI F, et al. Construction of conjugated polymer-exoelectrogen hybrid bioelectrodes and applications in microbial fuel cells [J]. Chinese Journal of Biotechnology, 2021, 37(1): 1-14.
[114] ZHOU X, LV F, HUANG Y, et al. Biohybrid conjugated polymer materials for augmenting energy conversion of bioelectrochemical systems [J]. Chemistry-a European Journal, 2020, 26(66): 15065-15073. doi: 10.1002/chem.202002041
[115] DONG G W, WANG H H, YAN Z Y, et al. Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes: Mechanisms and environmental applications [J]. The Science of the Total Environment, 2020, 740: 140080. doi: 10.1016/j.scitotenv.2020.140080
[116] KORTH B, MASKOW T, PICIOREANU C, et al. The microbial electrochemical Peltier heat: an energetic burden and engineering chance for primary microbial electrochemical technologies [J]. Energy & Environmental Science, 2016, 9(8): 2539-2544.
[117] WAGNER R C, CALL D F, LOGAN B E. Optimal set anode potentials vary in bioelectrochemical systems [J]. Environmental Science & Technology, 2010, 44(16): 6036-6041.
[118] FIRER-SHERWOOD M, PULCU G S, ELLIOTT S J. Electrochemical interrogations of the Mtr cytochromes from Shewanella: Opening a potential window [J]. JBIC Journal of Biological Inorganic Chemistry, 2008, 13(6): 849-854. doi: 10.1007/s00775-008-0398-z
[119] STRAUB, BENZ, SCHINK. Iron metabolism in anoxic environments at near neutral pH [J]. FEMS Microbiology Ecology, 2001, 34(3): 181-186. doi: 10.1111/j.1574-6941.2001.tb00768.x
[120] WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction [J]. Nature Reviews. Microbiology, 2006, 4(10): 752-764. doi: 10.1038/nrmicro1490
[121] BEBLAWY S, BURSAC T, PAQUETE C, et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis [J]. Molecular Microbiology, 2018, 109(5): 571-583. doi: 10.1111/mmi.14067
[122] GROBBLER C, VIRDIS B, NOUWENS A, et al. Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1 [J]. Bioelectrochemistry (Amsterdam, Netherlands), 2018, 119: 172-179. doi: 10.1016/j.bioelechem.2017.10.001
[123] KORTH B, HARNISCH F. Spotlight on the energy harvest of electroactive microorganisms: The impact of the applied anode potential [J]. Frontiers in Microbiology, 2019, 10: 1352. doi: 10.3389/fmicb.2019.01352
[124] HIROSE A, KASAI T, AOKI M, et al. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways [J]. Nature Communications, 2018, 9(1): 1083. doi: 10.1038/s41467-018-03416-4
[125] GARRETT T R, BHAKOO M, ZHANG Z. Bacterial adhesion and biofilms on surfaces [J]. Progress in Natural Science, 2008, 18(9): 1049-1056. doi: 10.1016/j.pnsc.2008.04.001
[126] LI C C , CHENG S A. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system [J]. Critical Reviews in Biotechnology, 2019, 39(8): 1015-1030. doi: 10.1080/07388551.2019.1662367
[127] MARSHALL T A, MORRIS K, LAW G T W, et al. Incorporation of uranium into hematite during crystallization from ferrihydrite [J]. Environmental Science & Technology, 2014, 48(7): 3724-3731.
[128] XIAO Y, ZHANG E H, ZHANG J D, et al. Extracellular polymeric substances are transient media for microbial extracellular electron transfer [J]. Science Advances, 2017, 3(7): e1700623. doi: 10.1126/sciadv.1700623
[129] PONS L, DELIA M L, BERGEL A. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes [J]. Bioresource Technology, 2011, 102(3): 2678-2683. doi: 10.1016/j.biortech.2010.10.138
[130] HIZAL F, RUNGRAENG N, LEE J, et al. Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity [J]. ACS Applied Materials & Interfaces, 2017, 9(13): 12118-12129.
[131] WANG H, SONG L J, JIANG R J, et al. Super-repellent photodynamic bactericidal hybrid membrane [J]. Journal of Membrane Science, 2020, 614: 118482. doi: 10.1016/j.memsci.2020.118482
[132] ANJUM, A S, K C SUN, M ALI, et al. Fabrication of coral-reef structured nano silica for self-cleaning and super- hydrophobic textile applications [J]. Chemical Engineering Journal, 2020, 401: 125859. doi: 10.1016/j.cej.2020.125859
[133] BOKS N P, NORDE W, van der MEI H C, et al. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces [J]. Microbiology, 2008, 154(10): 3122-3133. doi: 10.1099/mic.0.2008/018622-0
[134] GUO K, FREGUIA S, DENNIS P G, et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems [J]. Environmental Science & Technology, 2013, 47(13): 7563-7570.
[135] KOBAYASHI M, TERAYAMA Y, YAMAGUCHI H, et al. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes [J]. Langmuir, 2012, 28(18): 7212-7222. doi: 10.1021/la301033h
[136] WANG Z X, ELIMELECH M, LIN S H. Environmental applications of interfacial materials with special wettability [J]. Environmental Science & Technology, 2016, 50(5): 2132-2150.
[137] YUAN Y, CAI X X, WANG Y Q, et al. Electron transfer at microbe-humic substances interfaces: Electrochemical, microscopic and bacterial community characterizations [J]. Chemical Geology, 2017, 456: 1-9. doi: 10.1016/j.chemgeo.2017.02.020
[138] DING C M, LV M L, ZHU Y, et al. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4 [J]. Angewandte Chemie (International Ed. in English), 2015, 54(5): 1446-1451. doi: 10.1002/anie.201409163
[139] ZHAO C, DING C, LV M, et al. Hydrophilicity boosted extracellular electron transfer in Shewanella loihica PV-4 [J]. RSC Advances, 2016, 6(27): 22488-22493. doi: 10.1039/C5RA24369F
[140] LIN X, YANG F, YOU L X, et al. Liposoluble quinone promotes the reduction of hydrophobic mineral and extracellular electron transfer of Shewanella oneidensis MR-1 [J]. The Innovation, 2021,2 (2): 100104.
[141] YEUNG T, GILBERT G E, SHI J L, et al. Membrane phosphatidylserine regulates surface charge and protein localization [J]. Science, 2008, 319(5860): 210-213. doi: 10.1126/science.1152066
[142] KE Y, LIU C, ZHANG X, et al. Surface modification of polyhydroxyalkanoates toward enhancing cell compatibility and antibacterial activity [J]. Macromolecular Materials and Engineering, 2017, 302(11): 1700258. doi: 10.1002/mame.201700258
[143] WU J, ZHAO S, XU S, et al. Acidity-triggered charge-reversible multilayers for construction of adaptive surfaces with switchable bactericidal and bacteria-repelling functions [J]. Journal of Materials Chemistry B, 2018, 6(45): 7462-7470. doi: 10.1039/C8TB02093K
[144] CHAROENSRI K, RODWIHOK C, WONGRATANAPHISAN D, et al. Investigation of functionalized surface charges of thermoplastic Starch/Zinc oxide nanocomposite films using polyaniline: the potential of improved antibacterial properties [J]. Polymers, 2021, 13(3): 425. doi: 10.3390/polym13030425