[1] |
ZHU Y H, YAO Y, LUO Z, et al. Nanostructured MoO3 for efficient energy and environmental catalysis [J]. Molecules, 2019, 25(1): 18. doi: 10.3390/molecules25010018
|
[2] |
WEI M Y, SHI X W, XIAO L, et al. Synthesis of polyimide-modified carbon nanotubes as catalyst for organic pollutant degradation via production of singlet oxygen with peroxymonosulfate without light irradiation [J]. Journal of Hazardous Materials, 2020, 382: 120993. doi: 10.1016/j.jhazmat.2019.120993
|
[3] |
BLOEM E, ALBIHN A, ELVING J, et al. Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: A review [J]. Science of The Total Environment, 2017, 607/608: 225-242. doi: 10.1016/j.scitotenv.2017.06.274
|
[4] |
程梦婷, 刘倩, 刘稷燕, 等. 石墨烯在环境有机污染物分析中的应用进展 [J]. 环境化学, 2014, 33(10): 1733-1743. doi: 10.7524/j.issn.0254-6108.2014.10.019
CHENG M T, LIU Q, LIU J Y, et al. Recent advances in application of graphene in analysis of environmental organic pollutants [J]. Environmental Chemistry, 2014, 33(10): 1733-1743(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.019
|
[5] |
张长斌. 室内空气污染物催化氧化研究 [J]. 环境化学, 2015, 34(5): 817-823. doi: 10.7524/j.issn.0254-6108.2015.05.2015010509
ZHANG C B. Study of catalytic oxidation of indoor air pollutants [J]. Environmental Chemistry, 2015, 34(5): 817-823(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.05.2015010509
|
[6] |
YANG Y L, WU M G, ZHU X W, et al. 2020 Roadmap on two-dimensional nanomaterials for environmental catalysis [J]. Chinese Chemical Letters, 2019, 30(12): 2065-2088. doi: 10.1016/j.cclet.2019.11.001
|
[7] |
AHSAN M A, JABBARI V, EL-GENDY A A, et al. Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon [J]. Applied Surface Science, 2019, 497: 143608. doi: 10.1016/j.apsusc.2019.143608
|
[8] |
BARAN N Y. Generation and characterization of palladium nanocatalyst anchored on a novel polyazomethine support: Application in highly efficient and quick catalytic reduction of environmental contaminant nitroarenes [J]. Journal of Molecular Structure, 2020, 1220: 128697. doi: 10.1016/j.molstruc.2020.128697
|
[9] |
陈满堂, 王楠, 朱丽华. X射线光电子能谱在环境催化研究中的应用 [J]. 环境化学, 2017, 36(10): 2140-2146. doi: 10.7524/j.issn.0254-6108.2017030802
CHEN M T, WANG N, ZHU L H. Application of X-ray photoelectron spectroscopy in environmental catalysis research [J]. Environmental Chemistry, 2017, 36(10): 2140-2146(in Chinese). doi: 10.7524/j.issn.0254-6108.2017030802
|
[10] |
LI L L, PENG S J, LEE J K Y, et al. Electrospun hollow nanofibers for advanced secondary batteries [J]. Nano Energy, 2017, 39: 111-139. doi: 10.1016/j.nanoen.2017.06.050
|
[11] |
LU X F, WANG C, FAVIER F, et al. Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance [J]. Advanced Energy Materials, 2017, 7(2): 1601301. doi: 10.1002/aenm.201601301
|
[12] |
MIN L L, PAN H, CHEN S Y, et al. Recent progress in bio-inspired electrospun materials [J]. Composites Communications, 2019, 11: 12-20. doi: 10.1016/j.coco.2018.10.010
|
[13] |
WU J, WANG N, ZHAO Y, et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications [J]. Journal of Materials Chemistry A, 2013, 1(25): 7290-7305. doi: 10.1039/c3ta10451f
|
[14] |
ZHAO R, LU X F, WANG C. Electrospinning based all-nano composite materials: Recent achievements and perspectives [J]. Composites Communications, 2018, 10: 140-150. doi: 10.1016/j.coco.2018.09.005
|
[15] |
SUN M H, HUANG S Z, CHEN L H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine [J]. Chemical Society Reviews, 2016, 45: 3479-3563. doi: 10.1039/C6CS00135A
|
[16] |
WEI Q L, XIONG F Y, TAN S S, et al. Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage [J]. Advanced Materials, 2017, 29(20): 160230.
|
[17] |
KUMAR P S, SUNDARAMURTHY J, SUBRAMANIAN S, et al. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation [J]. Energy & Environmental Science, 2014, 7(10): 3192-3222.
|
[18] |
HADIA N M A, ALZAID M, MOHAMED W S. Tailoring the physical properties of low dimensional MgO nanostructures using vapor transport deposition [J]. Materials Characterization, 2020, 165: 110392. doi: 10.1016/j.matchar.2020.110392
|
[19] |
MENG Z C, GAO L Y, LIU Z Q. Synthesis of Sn nanowire by template electrodeposition and its conversion into Sn nanosolder [J]. Materials Characterization, 2020, 163: 110278. doi: 10.1016/j.matchar.2020.110278
|
[20] |
ZHANG Y, NISHI N, AMANO K, et al. One-dimensional Pt nanofibers formed by the redox reaction at the ionic liquid| water interface [J]. Electrochimica Acta, 2018, 282: 886-891. doi: 10.1016/j.electacta.2018.06.024
|
[21] |
WANG L, YANG G R, PENG S J, et al. One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning [J]. Energy Storage Materials, 2020, 25: 443-476. doi: 10.1016/j.ensm.2019.09.036
|
[22] |
JIANG Z X, ZHAO Y, YANG P. Formation of MFe2O4(M = Co, Mn, Ni) 1D nanostructures towards rapid removal of pollutants [J]. Materials Chemistry and Physics, 2018, 214: 1-7. doi: 10.1016/j.matchemphys.2018.04.066
|
[23] |
MOHEMAN A, ALAM M S, MOHAMMAD A. Recent trends in electrospinning of polymer nanofibers and their applications in ultra-thin layer chromatography [J]. Advances in Colloid and Interface Science, 2016, 229: 1-24. doi: 10.1016/j.cis.2015.12.003
|
[24] |
KIM T, NAOKI W, MIYAWAKI J, et al. Synthesis of surface-replicated ultra-thin silica hollow nanofibers using structurally different carbon nanofibers as templates [J]. Journal of Solid State Chemistry, 2019, 272: 21-26. doi: 10.1016/j.jssc.2019.01.025
|
[25] |
LIN J, YANG Y, ZHANG H, et al. Carbon nanotube growth on titanium boride powder by chemical vapor deposition: Influence of nickel catalyst and carbon precursor supply [J]. Ceramics International, 2020, 46(8): 12409-12415. doi: 10.1016/j.ceramint.2020.02.002
|
[26] |
刘朋超, 龚静华, 杨曙光, 等. 静电纺丝法制备陶瓷中空纳米纤维的研究进展 [J]. 无机材料学报, 2013, 28(6): 571-578. doi: 10.3724/SP.J.1077.2013.12625
LIU P C, GONG J H, YANG S G, et al. Research progress on the preparation of ceramic hollow nanofibers by electrospinning [J]. Journal of Inorganic Materials, 2013, 28(6): 571-578(in Chinese). doi: 10.3724/SP.J.1077.2013.12625
|
[27] |
BAZILEVSKY A V, YARIN A L, MEGARIDIS C M. Co-electrospinning of core-shell fibers using a single-nozzle technique [J]. Langmuir, 2007, 23(5): 2311-2314. doi: 10.1021/la063194q
|
[28] |
LI X H, SHAO C L, LIU Y C. A simple method for controllable preparation of polymer nanotubes via a single capillary electrospinning [J]. Langmuir, 2007, 23(22): 10920-10923. doi: 10.1021/la701806f
|
[29] |
JING P P, DU J L, WANG J B, et al. Hierarchical SrTiO3/NiFe2O4 composite nanostructures with excellent light response and magnetic performance synthesized toward enhanced photocatalytic activity [J]. Nanoscale, 2015, 7(35): 14738-14746. doi: 10.1039/C5NR04819B
|
[30] |
DUAN N, GENG X, YE L, et al. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation [J]. Biomedical Materials, 2016, 11(3): 035007. doi: 10.1088/1748-6041/11/3/035007
|
[31] |
CHANG G, ZHENG X, CHEN R, et al. Silver nanoparticles filling in TiO2 hollow nanofibers by coaxial electrospinning [J]. Acta Physico-Chimica Sinica, 2008, 24(10): 1790-1797. doi: 10.1016/S1872-1508(08)60073-X
|
[32] |
KANG S, HWANG J. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment [J]. Chemical Engineering Journal, 2020, 379: 122315. doi: 10.1016/j.cej.2019.122315
|
[33] |
CHEN H, WANG N, DI J C, et al. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning [J]. Langmuir, 2010, 26(13): 11291-11296. doi: 10.1021/la100611f
|
[34] |
CHO J S, HONG Y J, KANG Y C. Electrochemical properties of fiber-in-tube-and filled-structured TiO2 nanofiber anode materials for lithium-ion batteries [J]. Chemistry-A European Jounal, 2015, 21(31): 11082-11087. doi: 10.1002/chem.201500729
|
[35] |
FAN L, XIA Z, XU M J, et al. 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products [J]. Advanced Functional Materials, 2018, 28(17): 1706289. doi: 10.1002/adfm.201706289
|
[36] |
LANG L, WU D, XU Z. Controllable fabrication of TiO2 1D-nano/micro structures: solid, hollow, and tube-in-tube fibers by electrospinning and the photocatalytic performance [J]. Chemistry-A European Journal, 2012, 18(34): 10661-10668. doi: 10.1002/chem.201200378
|
[37] |
JIN R, YANG Y, LI Y F, et al. In situ assembly of well-dispersed gold nanoparticles on hierarchical double-walled nickel silicate hollow nanofibers as an efficient and reusable hydrogenation catalyst [J]. Chemical Communications, 2014, 50(41): 5447-5450. doi: 10.1039/C4CC01286K
|
[38] |
ZHAO Y, CAO X Y, JIANG L. Bio-mimic multichannel microtubes by a facile method [J]. Journal of the American Chemical Society, 2007, 129(4): 764-765. doi: 10.1021/ja068165g
|
[39] |
ZHAO T Y, LIU Z Y, NAKATA K, et al. Multichannel TiO2 hollow fibers with enhanced photocatalytic activity [J]. Journal of Materials Chemistry, 2010, 20(24): 5095-5099. doi: 10.1039/c0jm00484g
|
[40] |
CHEN H Y, DI J C, WANG N, et al. Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach [J]. Small, 2011, 7(13): 1779-1783. doi: 10.1002/smll.201002376
|
[41] |
LIU S B, LU X F, XIAO J, et al. Bi2O3 nanosheets grown on multi-channel carbon matrix catalyze efficient CO2 electroreduction to HCOOH [J]. Angewandte Chemie International Edition, 2019, 58(39): 13828-13847. doi: 10.1002/anie.201907674
|
[42] |
ZHANG L, ZHAO Z J, WANG T, et al. Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide [J]. Chemical Society Reviews, 2018, 47: 5423-5443. doi: 10.1039/C8CS00016F
|
[43] |
TANG Z M, ZHAO Y X, LAI Q X, et al. Stepwise fabrication of co-embedded porous multichannel carbon nanofibers for high-efficiency oxygen reduction [J]. Nano-Micro Letters, 2019, 33: 11.
|
[44] |
SIRIRERKRATANA K, KEMCHEEVAKUL P, CHUANGCHOTE S, et al. Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets [J]. Journal of Cleaner Production, 2019, 215: 123-130. doi: 10.1016/j.jclepro.2019.01.037
|
[45] |
AREERACHAKUL N, SAKULKHAEMARUETHAI S, JOHIR M A H, et al. Photocatalytic degradation of organic pollutants from wastewater using aluminium doped titanium dioxide [J]. Journal of Water Process Engineering, 2019, 27: 177-184. doi: 10.1016/j.jwpe.2018.12.006
|
[46] |
YE F, WANG Z H, MI Y Z, et al. Preparation of reduced graphene oxide/titanium dioxide composite materials and its application in the treatment of oily wastewater [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 586: 124251.
|
[47] |
MAMAGHANI A H, HAGHIGHAT F, LEE C S. Role of Titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification [J]. Applied Catalysis B:Environmental, 2020, 269: 118735. doi: 10.1016/j.apcatb.2020.118735
|
[48] |
AGHIGHI A, HAGHIGHAT F. Evaluation of nano-titanium dioxide (TiO2) catalysts for ultraviolet photocatalytic oxidation air cleaning devices [J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1622-1629. doi: 10.1016/j.jece.2015.05.019
|
[49] |
OSTERMANN R, LI D, YIN Y D, et al. V2O5 nanorods on TiO2 nanofibers: A new class of hierarchical nanostructures enabled by electrospinning and calcination. [J]. Nano Letters, 2006, 6(6): 1297-1302. doi: 10.1021/nl060928a
|
[50] |
FORMO E, LEE E, CAMPBELL D, et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications [J]. Nano Letters, 2008, 8(2): 668-672. doi: 10.1021/nl073163v
|
[51] |
ZHAO K, TENG L T, TANG Y F, et al. Branched titanium oxide/vanadium oxide composite nanofibers formed by electrospinning and dipping in vanadium sol [J]. Ceramics International, 2014, 40(9): 15335-15340. doi: 10.1016/j.ceramint.2014.06.079
|
[52] |
WANG C H, ZHANG X T, SHAO C L, et al. Rutile TiO2 nanowires on anatase TiO2 nanofibers: A branched heterostructured photocatalysts via interface-assisted fabrication approach [J]. Journal of Colloid and Interface Science, 2011, 363(1): 157-164. doi: 10.1016/j.jcis.2011.07.035
|
[53] |
KIM S J, CHO Y K, SEOK J, et al. Highly branched RuO2 nanoneedles on electrospun TiO2 nanofibers as an efficient electrocatalytic platform [J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15321-15330.
|