[1] DAI Y, CHENG S, WANG Z, et al. Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles [J]. ACS Nano, 2018, 12(1): 455-463. doi: 10.1021/acsnano.7b06852
[2] EJIMA H, RICHARDSON J J, LIANG K, et al. One-step assembly of coordination complexes for versatile film and particle engineering [J]. Science, 2013, 341(6142): 154-157. doi: 10.1126/science.1237265
[3] CHEETHAM A K, RAO C N R, FELLER R K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials [J]. Chem Commun, 2006, 46: 4780-4795.
[4] NGUYEN T T, FURUKAWA H, FELIPE G, et al. Back cover: selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks [J]. Angewandte Chemie International Edition, 2014, 53(40): 10645-10648. doi: 10.1002/anie.201403980
[5] DAS P, YURAN S, YAN J, et al. Sticky tubes and magnetic hydrogels co-assembled by a short peptide and melanin-like nanoparticles [J]. Chem Commun, 2015, 51(25): 5432-5435. doi: 10.1039/C4CC07671K
[6] 兰欣, 汪东风, 徐莹, 张旭鹏. 食品中酚类成分及其与其它成分相互作用研究进展[J]. 食品与机械2012, 28(3): 250-254. LAN X, WANG F F, XU Y, ZHANG X P. Advances in studies on phenolic compounds in food and their interactions with other compounds [J]. Food and Machinery 2012, (3): 250-254(in Chinese).
[7] 付伟, 吴子龙, 耿霄, 张浩. 单宁酸生物学功能及其应用前景 [J]. 饲料研究, 2019, 42(11): 108-111. FU W, WU Z L, GENG X, ZHANG H. biological function and application prospect of tannic acid [J]. Feed research, 2019, 42(11): 108-111(in Chinese).
[8] MAIER G P, RAPP M V, WAITE J H, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement [J]. Science, 2015, 349(6248): 628-632. doi: 10.1126/science.aab0556
[9] XIE Y, YAN B, XU H, et al. Highly Regenerable Mussel-Inspired Fe3O4@Polydopamine-Ag Core-Shell Microspheres as Catalyst and Adsorbent for Methylene Blue Removal [J]. Acs Applied Materials & Interfaces, 2014, 6(11): 8845-8852.
[10] GUO J, PING Y, EJIMA H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks [J]. Angewandte Chemie, 2014, 53(22): 5546‐5551.
[11] GEISLER S, BARRANTES A, TENGVALL P, et al. Deposition kinetics of bioinspired phenolic coatings on titanium surfaces. [J]. Langmuir, 2016, 32(32): 8050-8060. doi: 10.1021/acs.langmuir.6b01959
[12] SHEN Y, DU C, ZHOU J, et al. Application of nano FeIII-tannic acid complexes in modifying aqueous acrylic latex for controlled-release coated urea [J]. Journal of Agricultural & Food Chemistry, 2017, 65(5): 1030-1036.
[13] YANG L, HAN L, REN J, et al. Coating process and stability of metal-polyphenol film [J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015, 484: 197-205.
[14] PARK J H, KIM K, LEE J, et al. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation [J]. Angewandte Chemie, 2014, 126(46): 12628-12633. doi: 10.1002/ange.201405905
[15] OZAWA H, HAGA M A. Soft nano-wrapping on graphene oxide by using metal–organic network films composed of tannic acid and Fe ions [J]. Physical Chemistry Chemical Physics, 2015, 17(14): 8609-8613. doi: 10.1039/C5CP00264H
[16] EJIMA H, RICHARDSON J J, CARUSO F, et al. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces [J]. Nano Today, 2017: 136-148.
[17] SUNGUR S, UZAR A. Investigation of complexes tannic acid and myricetin with Fe(III). [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2008, 69(1): 225-229. doi: 10.1016/j.saa.2007.03.038
[18] BRAY K, PREVIDI R, GIBSON B C, et al. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes [J]. Nanoscale, 2015, 7(11): 4869-4874. doi: 10.1039/C4NR07510B
[19] RAHIM M A, KEMPE K, MULLNER M, et al. Surface-confined amorphous films from metal-coordinated simple phenolic ligands [J]. Chemistry of Materials, 2015, 27(16): 5825-5832. doi: 10.1021/acs.chemmater.5b02790
[20] ZHANG P, LI H, VEITH G M, et al. Soluble porous coordination polymers by mechanochemistry:From metal-containing films/membranes to active catalysts for aerobic oxidation [J]. Advanced Materials, 2015, 27(2): 234-239. doi: 10.1002/adma.201403299
[21] KAUPP G. Solid-state molecular syntheses: complete reactions without auxiliaries based on the new solid-state mechanism [J]. CrystEngComm, 2003, 5(23): 117-133. doi: 10.1039/b303432a
[22] LEMMERER A, BERNSTEIN J, KAHLENBERG V. Hydrogen bonding patterns of the co-crystal containing the pharmaceutically active ingredient isoniazid and terephthalic acid [J]. Journal of Chemical Crystallography, 2011, 41(7): 991-997. doi: 10.1007/s10870-011-0031-9
[23] FRISCIC T, HALASZ I, BELDON P J, et al. Real-time and in situ monitoring of mechanochemical milling reactions [J]. Nature Chemistry, 2013, 5(1): 66-73. doi: 10.1038/nchem.1505
[24] PITENIS A A, HARRIS K L, JUNK C P, et al. Ultralow wear PTFE and alumina composites: It is all about tribochemistry [J]. Tribology Letters, 2015, 57(1): 3735-3739.
[25] BAYTEKIN H T, BAYTEKIN B, HUDA S, et al. Mechanochemical activation and patterning of an adhesive surface toward nanoparticle deposition [J]. Journal of the American Chemical Society, 2015, 137(5): 1726-1729. doi: 10.1021/ja507983x
[26] HARRIS K L, PITENIS A A, SAWYER W G, et al. PTFE tribology and the role of mechanochemistry in the development of protective surface films [J]. Macromolecules, 2015, 48(11): 3739-3745. doi: 10.1021/acs.macromol.5b00452
[27] KANG J, BAI G, MA S, et al. On‐Site Surface coordination complexation via mechanochemistry for versatile metal–phenolic networks films[J]. Advanced Materials Interfaces, 2019, 6(5): 1801789.
[28] FUJIE T, KAWAMOTO Y, HANIUDA H, et al. Selective molecular permeability induced by glass transition dynamics of semicrystalline polymer ultrathin films [J]. Macromolecules, 2013, 46(2): 395-402. doi: 10.1021/ma302081e
[29] HOLTENANDERSEN N, HARRINGTON M J, BIRKEDAL H, et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 2651-2655. doi: 10.1073/pnas.1015862108
[30] FU Z , CHEN R . Study of Complexes of tannic acid with Fe(III) and Fe(II)[J]. Journal of Analytical Methods in Chemistry, 2019,3: 3894571.
[31] SHEN G, XING R, ZHANG N, et al. Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy [J]. ACS Nano, 2016, 10(6): 5720-5729. doi: 10.1021/acsnano.5b07276
[32] HONG D, PARK M, YANG S H, et al. Artificial spores: Cytoprotective nanoencapsulation of living cells [J]. Trends in Biotechnology, 2013, 31(8): 442-447. doi: 10.1016/j.tibtech.2013.05.009
[33] POPESCU M, MOURTAS S, PAMPALAKIS G, et al. pH-responsive hydrogel/liposome soft nanocomposites for tuning drug release [J]. Biomacromolecules, 2011, 12(8): 3023-3030. doi: 10.1021/bm2006483
[34] ZHENG D, LEI Q, ZHU J, et al. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. [J]. Nano Letters, 2017, 17(1): 284-291. doi: 10.1021/acs.nanolett.6b04060
[35] ZHU Y, WANG D, JIANG L, et al. Recent progress in developing advanced membranes for emulsified oil/water separation [J]. NPG Asia Materials, 2014, 6(5): e101. doi: 10.1038/am.2014.23
[36] MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: Recent advances and future prospects [J]. Desalination, 2015, 356: 226-254. doi: 10.1016/j.desal.2014.10.043
[37] MATIN A, KHAN Z, ZAIDI S M, et al. Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention [J]. Desalination, 2011, 281(281): 1-16.
[38] RANA D, MATSUURA T. Surface modifications for antifouling membranes [J]. Chemical Reviews, 2010, 110(4): 2448-2471. doi: 10.1021/cr800208y
[39] YANG Q, MI B. Nanomaterials for membrane fouling control: accomplishments and challenges [J]. Advances in Chronic Kidney Disease, 2013, 20(6): 536-555. doi: 10.1053/j.ackd.2013.08.005
[40] KIM H J, KIM D, YOON H, et al. Polyphenol/FeIII complex coated membranes having multifunctional properties prepared by a one‐step fast assembly [J]. Advanced Materials Interfaces, 2015, 2(14): 1500298. doi: 10.1002/admi.201500298
[41] SONG Y, KONG X, YIN X, et al. Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 522: 585-592. doi: 10.1016/j.colsurfa.2017.03.023
[42] WU J, WANG Z, YAN W, et al. Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer [J]. Journal of Membrane Science, 2015, 496: 58-69. doi: 10.1016/j.memsci.2015.08.044
[43] DONG C, WANG Z, WU J, et al. A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property [J]. Desalination, 2017, 401: 32-41. doi: 10.1016/j.desal.2016.06.034
[44] ZHAO X, ZHANG R, LIU Y, et al. Antifouling membrane surface construction: Chemistry plays a critical role [J]. Journal of Membrane Science, 2018, 551: 145-171. doi: 10.1016/j.memsci.2018.01.039
[45] DING X, ZHANG B, PEI Q, et al. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1 [J]. BMC Cancer, 2014, 14(1): 271. doi: 10.1186/1471-2407-14-271
[46] KIM Y I , YOON T H , LEE S , et al. Integrated optical isolator using multi-mode interference structure.:US10955980[P]. [2005-05-05]
[47] YOON H M, KIM Y, LEE J H, et al. Robot-assisted total gastrectomy is comparable with laparoscopically assisted total gastrectomy for early gastric cancer [J]. Surgical Endoscopy and Other Interventional Techniques, 2012, 26(5): 1377-1381. doi: 10.1007/s00464-011-2043-0
[48] TAN Q R, WANG X Z, WANG C Y, et al. Differential effects of classical and atypical antipsychotic drugs on rotenone-induced neurotoxicity in PC12 cells [J]. European Neuropsychopharmacology, 2007, 17(12): 768-773. doi: 10.1016/j.euroneuro.2007.03.003
[49] GURR P A, SCOFIELD J M P, KIM J, et al. Polyimide polydimethylsiloxane triblock copolymers for thin film composite gas separation membranes [J]. Journal of Polymer Science Part A Polymer Chemistry, 2014, 52(23): 3372-3382. doi: 10.1002/pola.27401
[50] BALANTA A, GODARD C, CLAVER C, et al. Pd nanoparticles for C–C coupling reactions [J]. Chemical Society Reviews, 2011, 40(10): 4973-4985. doi: 10.1039/c1cs15195a
[51] GARG N, MOHANTY A, LAZARUS N, et al. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors [J]. Nanotechnology, 2010, 49: 4962-4966.
[52] XIAO Y, SHLYAHOVSKY B, POPOV I, et al. Shape and color of au nanoparticles follow biocatalytic processes. [J]. Langmuir, 2005, 21(13): 5659-5662. doi: 10.1021/la050308+
[53] BOLOBAJEV J, TRAPIDO M, GOI A. Interaction of tannic acid with ferric iron to assist 2, 4, 6-trichlorophenol catalytic decomposition and reuse of ferric sludge as a source of iron catalyst in Fenton-based treatment [J]. Applied Catalysis B, 2016, 187: 75-82. doi: 10.1016/j.apcatb.2016.01.015