[1] WANG R, MA X, LIU T, et al. Degradation aspects of endocrine disrupting chemicals: A review on photocatalytic processes and photocatalysts [J]. Applied Catalysis a-General, 2020, 597: 117547. doi: 10.1016/j.apcata.2020.117547
[2] 宋作栋, 仇雁翎, 张华, 等. 水体中双酚类物质的赋存现状及研究进展 [J]. 环境化学, 2020, 39(6): 1496-1503. doi: 10.7524/j.issn.0254-6108.2019081413 SONG Z D, QIU Y L, ZHANG H, et al. The occurrence and research progress of bisphenol analogues in aquatic environment [J]. Environmental Chemistry, 2020, 39(6): 1496-1503(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081413
[3] JIANG D, CHEN W Q, ZENG X, et al. Dynamic stocks and flows analysis of Bisphenol A (BPA) in China: 2000—2014 [J]. Environmental Science & Technology, 2018, 52(6): 3706-3715.
[4] 赵荧, 李媛, 陈永柏. 双酚A和酞酸酯对鱼类内分泌干扰效应及繁殖毒性研究 [J]. 水生态学杂志, 2017, 38(6): 1-10. ZHAO Y, LI Y, CHEN Y Y. Research progress of endocrine-disrupting effects and reproductive toxicity of Bisphenol A and phthalic acid esters on fish [J]. Journal of Water Ecology, 2017, 38(6): 1-10(in Chinese).
[5] LU J, ZHANG C, WU J, et al. Seasonal distribution, risks, and sources of endocrine disrupting chemicals in coastal waters: Will these emerging contaminants pose potential risks in marine environment at continental-scale? [J]. Chemosphere, 2020, 247: 125907. doi: 10.1016/j.chemosphere.2020.125907
[6] 熊美昱, 夏雨琪, 彭程. 典型类雌激素的降解方法及其影响因素研究进展 [J]. 环境化学, 2020, 39(3): 610-623. doi: 10.7524/j.issn.0254-6108.2019101303 XIONG M Y, XIA Y Q, PENG C. Degradation methods and factors of typical estrogen like substances [J]. Environmental Chemistry, 2020, 39(3): 610-623(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101303
[7] HU L, WANG P, SHEN T. The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: A review [J]. Science of the Total Environment, 2020, 722: 137831. doi: 10.1016/j.scitotenv.2020.137831
[8] HOU X, ZHANG G, HUANG X, et al. Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation [J]. Chemical Engineering Journal, 2020: 382;122355.
[9] 邓靖, 冯善方, 马晓雁, 等. 均相活化过硫酸氢盐高级氧化技术研究进展[J]. 水处理技术, 2015, 41(4): 13-19. DENG J, FENG S F, MA X Y, et al. Reach development in advanced oxidation processes based on homogeneous activation of peroxymonosulfate[J]. Water Treatment Technology, 2015, 41(4): 13-19(in Chinese).
[10] 王鸿斌, 王群, 刘义青, 等. 亚铁活化过硫酸盐降解水中双氯芬酸钠 [J]. 环境化学, 2020, 39(4): 869-875. doi: 10.7524/j.issn.0254-6108.2019040806 WANG H B, WANG Q, LIU Y Q, et al. Degradation of diclofenac by ferrous activated persulfate [J]. Environmental Chemistry, 2020, 39(4): 869-875(in Chinese). doi: 10.7524/j.issn.0254-6108.2019040806
[11] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review [J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. doi: 10.1080/10643380802039303
[12] 吴昊, 孙丽娜, 王辉, 等. 活化过硫酸钠原位修复石油类污染土壤研究进展 [J]. 环境化学, 2015, 34(11): 2085-2095. WU H, SUN L N, WANG H, et al. Persulfate In-situ remediation of petroleum hydrocarbon contaminated soil [J]. Environmental Chemistry, 2015, 34(11): 2085-2095(in Chinese).
[13] 张易旻, 陈铮铮, 陈昆柏, 等. 氯代有机物污染土壤高级化学氧化修复技术研究进展 [J]. 环境化学, 2019, 38(3): 480-493. doi: 10.7524/j.issn.0254-6108.2018050203 ZHANG Y M, CHEN Z Z, CHEN K B, et al. Remediation of chlorohydrocarbon contaminated soil by advanced oxidation technologies: A review [J]. Environmental Chemistry, 2019, 38(3): 480-493(in Chinese). doi: 10.7524/j.issn.0254-6108.2018050203
[14] 谷得明, 郭昌胜, 冯启言, 等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用 [J]. 环境化学, 2018, 37(11): 2489-2508. doi: 10.7524/j.issn.0254-6108.2018012102 GU D M, GUO C S, FENG Q Y, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation [J]. Environmental Chemistry, 2018, 37(11): 2489-2508(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012102
[15] DONG Z J, WANG F, SONG X L, et al. Fe (II)-activated persulfate oxidation effectively degrades iodoform in water: Influential factors and kinetics analysis [J]. Arabian Journal of Chemistry, 2020, 13(4): 5009-5017. doi: 10.1016/j.arabjc.2020.01.023
[16] REN H Y, ZHANG H M, JIA Q Z, et al. Oxidation of sulfamerazine with Fe2+/Persulfate system: Effects of inorganic anions and degradation mechanism based on independent reaction [J]. Fresenius Environmental Bulletin, 2020, 29(2): 1096-1103.
[17] WANG S, WU J, LU X, et al. Removal of acetaminophen in the Fe2+/persulfate system: Kinetic model and degradation pathways [J]. Chemical Engineering Journal, 2019, 358: 1091-1100. doi: 10.1016/j.cej.2018.09.145
[18] TAN C, GAO N, CHU W, et al. Degradation of diuron by persulfate activated with ferrous ion [J]. Separation and Purification Technology, 2012, 95: 44-48. doi: 10.1016/j.seppur.2012.04.012
[19] RAO Y F, QU L, YANG H, et al. Degradation of carbamazepine by Fe(II)-activated persulfate process [J]. Journal of Hazardous Materials, 2014, 268: 23-32. doi: 10.1016/j.jhazmat.2014.01.010
[20] 贾之慎. 无机分析化学[M]. 2版. 杭州: 高等教育出版社, 2015: 409. JIA Z S. Inorganic and Analytical Chemistry[M]. Second Edition. Hangzhou: Higher Education Press, 2015: 409(in Chinese).
[21] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (OH/O) in aqueous-solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
[22] TAN C, DONG Y, SHI L, et al. Degradation of orange II in ferrous activated peroxymonosulfate system: Efficiency, situ EPR spin trapping and degradation pathway study [J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83: 74-81. doi: 10.1016/j.jtice.2017.11.014
[23] CHU W, CHAN K H, KWAN C Y, et al. Degradation of atrazine by modified stepwise-Fenton's processes [J]. Chemosphere, 2007, 67(4): 755-761. doi: 10.1016/j.chemosphere.2006.10.039
[24] LI Y, BAGHI R, FILIP J, et al. Activation of peroxydisulfate by ferrite materials for phenol degradation [J]. Acs Sustainable Chemistry & Engineering, 2019, 7(9): 8099-8108.
[25] YAN S, SHI Y, TAO Y, et al. Enhanced persulfate-mediated photocatalytic oxidation of bisphenol A using bioelectricity and a g-C3N4/Fe2O3 heterojunction [J]. Chemical Engineering Journal, 2019, 359: 933-943. doi: 10.1016/j.cej.2018.11.093
[26] XU L J, CHU W, LEE P H, et al. The mechanism study of efficient degradation of hydrophobic nonylphenol in solution by a chemical-free technology of sonophotolysis [J]. Journal of Hazardous Materials, 2016, 308: 386-393. doi: 10.1016/j.jhazmat.2016.01.075
[27] XU L J, CHU W, GRAHAM N. A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process [J]. Ultrasonics Sonochemistry, 2013, 20(3): 892-899. doi: 10.1016/j.ultsonch.2012.11.005
[28] SHARMA J, MISHRA I M, DIONYSIOU D D, et al. Oxidative removal of bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway [J]. Chemical Engineering Journal, 2015, 276: 193-204. doi: 10.1016/j.cej.2015.04.021
[29] DU J, BAO J, LIU Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A [J]. Journal of Hazardous Materials, 2016, 320: 150-159. doi: 10.1016/j.jhazmat.2016.08.021