[1] MA B, JIN M G, LIANG X, et al. Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: Hydrogeochemistry and environmental tracer indicators [J]. Hydrogeology Journal, 2018, 26(D22): 233-250.
[2] JIANG Y, WU Y, GROVES C, et al. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China [J]. Journal of Contaminant Hydrology, 2009, 109(1-4): 49-61. doi: 10.1016/j.jconhyd.2009.08.001
[3] QIN R, WU Y, XU Z, et al. Assessing the impact of natural and anthropogenic activities on groundwater quality in coastal alluvial aquifers of the lower Liaohe River Plain, NE China [J]. Applied Geochemistry, 2013, 31(2): 142-158.
[4] XUE D, BOTTE J, BAETS B D, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater [J]. Water Research, 2009, 43(5): 1159-1170. doi: 10.1016/j.watres.2008.12.048
[5] REN C B , ZHANG Q Q. Groundwater chemical characteristics and controlling factors in a region of Northern China with intensive human activity [J]. International Journal of Environmental Research and Public Health, 2020, 17: 9126. doi: 10.3390/ijerph17239126
[6] PAZAND K, KHOSRAVI D, GHADERI M R, et al. Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in Central Iran [J]. Groundwater for Sustainable Development, 2018, 6: 245-254. doi: 10.1016/j.gsd.2018.01.008
[7] HUANG G, SUN J, ZHANG Y, et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China [J]. Science of the Total Environment, 2013, 463–464(5): 209-221.
[8] 孙厚云, 毛启贵, 卫晓锋, 等. 哈密盆地地下水系统水化学特征及形成演化 [J]. 中国地质, 2018, 45(6): 1128-1141. SUN H Y, MAO Q G, WEI X F, et al. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin [J]. Geology in China, 2018, 45(6): 1128-1141(in Chinese).
[9] 崔佳琪, 李仙岳, 史海滨, 等. 河套灌区地下水化学演变特征及形成机制 [J]. 环境科学, 2020, 41(9): 135-144. CUI J Q, LI X Y, SHI H B, et al. Chemical evolution and formation mechanism of groundwater in Hetao Irrigation Area [J]. Environmental Science, 2020, 41(9): 135-144(in Chinese).
[10] 刘江涛, 蔡五田, 曹月婷, 等. 沁河冲洪积扇地下水水化学特征及成因分析 [J]. 环境科学, 2018, 39(12): 142-153. LIU J T, CAI W T, CAO Y T, et al. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe River [J]. Environmental Science, 2018, 39(12): 142-153(in Chinese).
[11] 安乐生, 赵全升, 叶思源, 等. 黄河三角洲浅层地下水化学特征及形成作用 [J]. 环境科学, 2012, 33(2): 370-378. AN L S, ZHAO Q S, YE S Y, et al. Hydrochemical characteristics and formation mechanism of shallow groundwater in the Yellow River delta [J]. Environmental Science, 2012, 33(2): 370-378(in Chinese).
[12] ZHANG Q Q, WANG L, WANG H W, et al. Spatio-temporal variation of groundwater quality and source apportionment using multivariate statistical techniques for the Hutuo River alluvial-pluvial fan, China [J]. International Journal of Environmental Research and Public Health, 2020, 17: 1055. doi: 10.3390/ijerph17031055
[13] 郭高轩, 侯泉林, 许亮, 等. 北京潮白河冲洪积扇地下水水化学的分层分带特征 [J]. 地球学报, 2014, 35(2): 204-210. doi: 10.3975/cagsb.2014.02.12 GUO G X, HOU Q L, XU L, et al. Delamination and zoning characteristics of quaternary groundwater in Chaobai alluvial-proluvial fan, Beijing, based on hydrochemical analysis [J]. Acta Geoscientica Sinica, 2014, 35(2): 204-210(in Chinese). doi: 10.3975/cagsb.2014.02.12
[14] ZHANG Q Q, WANG H W. Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of north China using a multi-isotope approach [J]. Journal of Environmental Sciences, 2020, 89: 9-22. doi: 10.1016/j.jes.2019.09.021
[15] KNEZOVIC N J, MEMIC M, MABIC M, et al. Correlation between water hardness and cardiovascular diseases in Mostar city, Bosnia and Herzegovina [J]. Journal of Water and Health, 2014, 12(4): 817-823. doi: 10.2166/wh.2014.129
[16] KOUSA A, HAVULINNA A, MOLTCHANOVA E, et al. Calcium magnesium ratio in local ground-water and incidence of acute myocardial in faction among males in rural Finland [J]. Environmental Health Perspect, 2006, 114(1): 730-734.
[17] 中华人民共和国自然资源部. 地下水质量标准(GB/T 14848-2017). 中华人民共和国国家质量监督检验检疫局, 2017. Ministry of natural resources of the People's Republic of China. Standard for Groundwater quality. (GB/T 14848-2017). General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2017(in Chinese).
[18] 冯建国, 赫明浩, 李贵恒, 等. 泰莱盆地孔隙水水化学特征及其控制因素分析 [J]. 环境化学, 2019, 38(11): 2594-2600. FENG J G, HE M H, LI G H, et al. Analysis of hydrochemical characteristics and controlling factors of porewater in the Tailai Basin [J]. Environmental Chemistry, 2019, 38(11): 2594-2600(in Chinese).
[19] 唐金平, 张强, 胡漾, 等. 湔江冲洪积扇地下水化学特征及控制因素分析 [J]. 环境科学, 2019, 40(7): 3089-3098. TANG J P, ZHANG Q, HU Y, et al. Groundwater chemical characteristics and analysis of their controlling factors in an Alluvial Fan of Jianjiang River [J]. Environmental Science, 2019, 40(7): 3089-3098(in Chinese).
[20] 张千千, 王慧玮, 王龙, 等. 滹沱河冲洪积扇地区地下水硬度升高的机理研究 [J]. 环境科学与技术, 2018, 41(S2): 62-68. ZHANG Q Q, WANG H W, WANG L, et al. Increasing mechanism of groundwater total hardness (TH) in the Hutuo River alluvial-pluvial fan [J]. Environmental Science & Technology, 2018, 41(S2): 62-68(in Chinese).
[21] GAILLARDET J, DUPRE B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1-4): 3-30. doi: 10.1016/S0009-2541(99)00031-5
[22] GUO G, WU F, XIE F, et al. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China [J]. Journal of Environmental Sciences, 2012(3): 410-418.
[23] LIU C Q, LI S L, LANG Y C, et al. Using delta15N- and delta18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China[J]. Environmental Science & Technology, 2006, 40(22): 6928.
[24] ZHANG Q, WANG H, WANG Y, et al. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China [J]. Environmental Science & Pollution Research, 2017, 24(20): 16639.
[25] ZHANG Q, WANG X, WAN W, et al. The spatial-temporal pattern and source apportionment of water pollution in a trans-urban river [J]. Polish Journal of Environmental Studies, 2015, 24(2): 841-851.
[26] SU S, ZHI J, LOU L, et al. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques [J]. Physics & Chemistry of the Earth, 2011, 36(9-11): 379-386.
[27] NESTLER A, BERGLUND M, ACCOE F, et al. Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies [J]. Environmental Science Pollution Research, 2011, 18(4): 519-533. doi: 10.1007/s11356-010-0422-z
[28] PASTEN –ZAPATA E, LEDESMA-RUIZ R, HARTER T, et al. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach [J]. Science of Total Environment, 2014, 470/471(2): 855-864.
[29] JIN Z, XUE Q, CHEN L, et al. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China [J]. Journal of Contaminant Hydrology, 2015, 177/178: 64-75. doi: 10.1016/j.jconhyd.2015.02.008
[30] KUMAZAWA K. Nitrogen fertilization and nitrate pollution in groundwater in Japan: present status and measures for sustainable agriculture [J]. Nutr Cycl Agroecosyst, 2002, 63(2/3): 129-137. doi: 10.1023/A:1021198721003
[31] ZHANG Q, SUN J, LIU J, et al. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south china [J]. Journal of Contaminant Hydrology, 2015, 182: 221-230. doi: 10.1016/j.jconhyd.2015.09.009