[1] |
徐伟. 强化微电解-Fenton氧化联合工艺处理石化废水的试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
|
[2] |
JARVIS P, SHARP E, PIDOU M, et al. Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants[J]. Water Research, 2012, 46(13): 4179 − 4187. doi: 10.1016/j.watres.2012.04.043
|
[3] |
朱喆, 李登新, 陈文渊. 一种微生物絮凝剂絮凝特性的研究[J]. 环境保护科学, 2008, 34(5): 36 − 37. doi: 10.3969/j.issn.1004-6216.2008.05.012
|
[4] |
YOKOI H, MORI S H J, HAYASHI S, et al. Biopolymer flocculant produced by an Enterobacter sp.[J]. Biotechnology Letters, 1996, 19(6): 569 − 573.
|
[5] |
房亚玲. 煤化工废水的微生物絮凝剂研究及其廉价制备[D]. 太原: 中北大学, 2016.
|
[6] |
WU J Y, YE H F. Characterization and flocculating properties of an extracellular biopolymer produced from a Bacillus subtilis DYU1 isolate[J]. Process Biochemistry, 2007, 42(7): 1114 − 1123. doi: 10.1016/j.procbio.2007.05.006
|
[7] |
SUN Y, ZHU C, ZHENGH, et al. Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment[J]. Chemical Engineering Research & Design Transactions of the Institution of Chemical Engineers, 2017, 119: 23 − 32.
|
[8] |
QIAO N, GAO M, ZHANG X, et al. Trichosporon fermentans biomass flocculation from soybean oil refinery wastewater using bioflocculant produced from Paecilomyces sp. M2-1[J]. Applied Microbiology and Biotechnology, 2019, 103(6): 2821 − 2831. doi: 10.1007/s00253-019-09643-z
|
[9] |
LI O, LU C, LIU A, et al. Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment.[J]. Bioresource Technology, 2013, 134(9): 87 − 93.
|
[10] |
张晶, 王战勇, 苏婷婷, 等. 微生物絮凝剂的研究及应用前景[J]. 环境保护科学, 2006, 32(4): 17 − 18. doi: 10.3969/j.issn.1004-6216.2006.04.006
|
[11] |
胡筱敏, 邓述波, 牛力东, 等. 一株芽孢杆菌所产絮凝剂的研究[J]. 环境科学研究, 2001(01): 36 − 40. doi: 10.3321/j.issn:1001-6929.2001.01.011
|
[12] |
宋永庆, 张龙, 李南华, 等. 絮凝菌的筛选、培养条件优化及对屠宰场废水的处理[J]. 安全与环境学报, 2016, 16(3): 211 − 215.
|
[13] |
章沙沙, 徐健峰, 柳增善. 微生物絮凝剂产生菌筛选及其对猪场污水絮凝效果分析[J]. 黑龙江畜牧兽医, 2021(13): 10 − 16.
|
[14] |
ZHANG S S, XU J F, SUN X L, et al. Cellulomonas taurus sp. nov. , a novel bacteria with multiple hydrolase activity isolated from livestock, and potential application in wastewater treatment[J]. Antonie Van Leeuwenhoek. 2021, 114(5): 527-538.
|
[15] |
周明罗, 陈杰, 游玲, 等. 白酒酿造废水制备微生物絮凝剂的研究[J]. 中国酿造, 2018, 11(37): 86 − 90.
|
[16] |
张超, 栾兴社, 陈文兵, 等. 新型生物絮凝剂处理生活污水的实验研究[J]. 工业水处理, 2013, 33(9): 31 − 33. doi: 10.3969/j.issn.1005-829X.2013.09.008
|
[17] |
NIE M. YIN X, JIA J, et al. Production of a novel bioflocculant MNXY1 by Klebsiella pneumoniae strain NY1 and application in precipitation of cyanobacteria and municipal wastewater treatment[J]. Journal of Applied Microbiology, 2011, 111(3): 547 − 558. doi: 10.1111/j.1365-2672.2011.05080.x
|
[18] |
AVNIMELECH Y. Carbon/nitrogen ratio as a control elementin aquaculture systems[J]. Aquaculture, 1999, 176(3): 227 − 235.
|
[19] |
刘毅, 袁月华. 固定化光合细菌净化养殖水质研究[J]. 水利渔业, 2008(2): 86 − 88. doi: 10.3969/j.issn.1003-1278.2008.02.034
|
[20] |
徐晨岚, 刘振鸿, 薛罡, 等. 产碱杆菌属H5对蓝藻的溶藻及脱氮效果的研究[J]. 环境工程, 2018, 36(5): 26 − 30.
|
[21] |
司圆圆, 陈兴汉, 许瑞雯, 等. 好氧反硝化细菌脱氮研究进展[J]. 山东化工, 2018, 47(4): 157 − 158. doi: 10.3969/j.issn.1008-021X.2018.04.066
|
[22] |
LI H, WU S, DU C, et al. Preparation, performances, and mechanisms of microbial flocculants for wastewater treatment[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 1360. doi: 10.3390/ijerph17041360
|
[23] |
TAO W A, XTA B, SZ B, et al. Roles of functional microbial flocculant in dyeing wastewater treatment: Bridging and adsorption - ScienceDirect[J]. Journal of Hazardous Materials, 2020, 15,384: 121506.
|
[24] |
GAO Q. , ZHU X H, MU J, et al. Using Ruditapesphilippinarum conglutination mud to produce bioflocculant and its applications in wastewater treatment[J]. Bioresource Technology, 2009, 100(21): 4996 − 5001. doi: 10.1016/j.biortech.2009.05.035
|
[25] |
邓述波, 余刚, 蒋展鹏, 等. 微生物絮凝剂在给水处理中的应用研究[J]. 中国给水排水, 2001, 2(17): 5-7.
|
[26] |
周焱. 微生物絮凝剂MBFGA1去除水中Ni(Ⅱ)的优化及机理研究[D]. 长沙: 湖南大学, 2017.
|
[27] |
LIN J , HARICHUND C. Industrial effluent treatments using heavy-metal removing bacterial bioflocculants[J]Water SA. 2011, 37: 265–270.
|
[28] |
陈婷. 多糖型微生物絮凝剂去除水中重金属离子的效能及机制[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
[29] |
杨琳, 朱丹, 胡洲, 等. 微生物絮凝剂对乳品及啤酒废水的絮凝研究[J]. 大理学院学报, 2014, 13(6): 63 − 65.
|
[30] |
宋清生, 薛美瑛. 活性炭吸附固定微生物絮凝剂处理淀粉废水的实验条件优化[J]. 山西科技, 2020, 2(35): 105 − 109.
|
[31] |
ZHANG X L, WANG Y P, LI Q B, et al. Theproduction of bioflocculants by Bacillus licheniformisusing molasses and its applicationinthe sugarcane industry[J]. Biotechnology and Bioprocess Engineering, 2012, 17(5): 1041 − 1047. doi: 10.1007/s12257-012-0213-0
|
[32] |
李志萍, 刘千钧, 林亲铁, 等. 造纸废水深度处理技术的应用研究进展[J]. 中国造纸学报, 2010(1): 102 − 107.
|
[33] |
芦艳, 孟丽丽, 乔富珍, 等. 高效微生物絮凝剂对造纸废水的应用研究[J]. 水处理技术, 2009, 35(7): 9 − 12.
|
[34] |
周英勃, 柴涛, 段婉君, 等. 白醋废水制备微生物絮凝剂的响应面法优化及其对造纸废水的处理[J]. 环境工程学报, 2016, 10(10): 5658 − 5664. doi: 10.12030/j.cjee.201601128
|
[35] |
李文鹏, 任晓莉, 项学敏, 等. 微生物絮凝剂对造纸废水的处理效果研究[J]. 工业水处理, 2013, 11(33), 13-16.
|
[36] |
吴大付, 李东方, 任秀娟, 等. 微生物絮凝剂的生产工艺及絮凝效果研究[J]. 广东农业科学, 2010(1), 88-91.
|
[37] |
石春芳, 冷小云, 等. 微生物絮凝剂在制药废水处理中的应用研究[J]. 现代化工, 2015, 35(9): 85 − 89.
|
[38] |
JUMADI J. , KAMARI A., HARGREAVES J. S. J., et al. A review on nano-based materials used as flocculants[J]. International journal of Environmental Science and Technology., 2020, 17: 3571 − 3594. doi: 10.1007/s13762-020-02723-y
|
[39] |
BUENANO B. , VERA E, ALDAS M B. Study of coagulating/flocculating characteristics of organic polymers extracted from biowaste for water treatment[J]. Ingenieria e Investigacion, 2019, 39(1): 24 − 35.
|
[40] |
YM A, RM A, CHAI S, et al. Investigating the influence of pectin content and structure on its functionality in bio-flocculant extracted from okra[J]. Carbohydrate Polymers, 2020, 241: 116414. doi: 10.1016/j.carbpol.2020.116414
|