[1] ALLER M F. Biochar properties: Transport, fate, and impact [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(14/15): 1183-1296.
[2] 张雪莲, 廖洪, 李昌伟, 等. 田间条件下生物炭与化肥配施对土壤氮磷纵向迁移、结球生菜产量品质及土壤微生物数量的影响 [J]. 环境科学学报, 2021, 41(1): 21-28. ZHANG X L, LIAO H, LI C W, et al. Effects of simultaneous application of biochar and chemical fertilizer on the vertical migration of nitrogen and phosphorus, lettuce yield and quality and soil microbial quantity under field conditions [J]. Acta Scientiae Circumstantiae, 2021, 41(1): 21-28(in Chinese).
[3] 李倩倩, 许晨阳, 耿增超, 等. 生物炭对塿土土壤容重和团聚体的影响 [J]. 环境科学, 2019, 40(7): 3388-3396. LI Q Q, XU C Y, GENG Z C, et al. Impact of biochar on soil bulk density and aggregates of Lou soil [J]. Environmental Science, 2019, 40(7): 3388-3396(in Chinese).
[4] 戴静, 刘阳生. 生物炭的性质及其在土壤环境中应用的研究进展 [J]. 土壤通报, 2013, 44(6): 1520-1525. DAI J, LIU Y S. Review of research on the properties of biochar and its applications in soil [J]. Chinese Journal of Soil Science, 2013, 44(6): 1520-1525(in Chinese).
[5] ANAWAR H M, AKTER F, SOLAIMAN Z M, et al. Biochar: an emerging Panacea for remediation of soil contaminants from mining, industry and sewage wastes [J]. Pedosphere, 2015, 25(5): 654-665. doi: 10.1016/S1002-0160(15)30046-1
[6] HE X S, XI B D, WEI Z M, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste [J]. Chemosphere, 2011, 82(4): 541-548. doi: 10.1016/j.chemosphere.2010.10.057
[7] GUO X J, LI C W, ZHU Q L, et al. Characterization of dissolved organic matter from biogas residue composting using spectroscopic techniques [J]. Waste Management, 2018, 78: 301-309. doi: 10.1016/j.wasman.2018.06.001
[8] FAN Q Y, SUN J X, QUAN G X, et al. Insights into the effects of long-term biochar loading on water-soluble organic matter in soil: Implications for the vertical co-migration of heavy metals [J]. Environment International, 2020, 136: 105439. doi: 10.1016/j.envint.2019.105439
[9] 杨毅, 马新培, 杨霞霞, 等. 城市污水二级出水溶解性有机物(DOM)与Cu2+作用的聚集和光谱特性 [J]. 环境化学, 2017, 36(12): 2609-2615. doi: 10.7524/j.issn.0254-6108.2017030202 ANG Y, MA X P, YANG X X, et al. Aggregation and spectral characteristics of DOM from secondary effluent of municipal wastewater in reaction with Cu2+ [J]. Environmental Chemistry, 2017, 36(12): 2609-2615(in Chinese). doi: 10.7524/j.issn.0254-6108.2017030202
[10] 杜士林, 李强, 丁婷婷, 等. 沙颍河流域水体中溶解性有机质(DOM)的荧光光谱解析[J]. 环境化学, 2019, 38(9): 2027-2037. DU S L, LI Q, DING T T, et al. Fluorescence spectra analysis of DOM in water of Shaying River basin[J].Environmental Chemistry, 2019, 38(9): 2027-2037 (in Chinese).
[11] HUANG M, LI Z W, LUO N L, et al. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals [J]. Science of the Total Environment, 2019, 646: 220-228. doi: 10.1016/j.scitotenv.2018.07.282
[12] LI G, KHAN S, IBRAHIM M, et al. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium [J]. Journal of Hazardous Materials, 2018, 348: 100-108. doi: 10.1016/j.jhazmat.2018.01.031
[13] LU Y F, ALLEN H E. Characterization of copper complexation with natural dissolved organic matter (DOM)—link to acidic moieties of DOM and competition by Ca and Mg [J]. Water Research, 2002, 36(20): 5083-5101. doi: 10.1016/S0043-1354(02)00240-3
[14] RYAN D K, WEBER J H. Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid [J]. Analytical Chemistry, 1982, 54(6): 986-990. doi: 10.1021/ac00243a033
[15] GUO X J, YU H B, YAN Z C, et al. Tracking variations of fluorescent dissolved organic matter during wastewater treatment by accumulative fluorescence emission spectroscopy combined with principal component, second derivative and canonical correlation analyses [J]. Chemosphere, 2018, 194: 463-470. doi: 10.1016/j.chemosphere.2017.12.023
[16] HUR J, LEE B M. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy [J]. Chemosphere, 2011, 83(11): 1603-1611. doi: 10.1016/j.chemosphere.2011.01.004
[17] WEI J, TU C, YUAN G D, et al. Limited Cu(II) binding to biochar DOM: Evidence from C K-edge NEXAFS and EEM-PARAFAC combined with two-dimensional correlation analysis [J]. Science of the Total Environment, 2020, 701: 134919. doi: 10.1016/j.scitotenv.2019.134919
[18] HUANG M, LI Z, LUO N, et al. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of the Total Environment, 2019,646: 220-228.
[19] 丁思惠, 方升佐, 田野, 等. 不同热解温度下杨树各组分生物质炭的理化特性分析与评价 [J]. 南京林业大学学报(自然科学版), 2020, 44(6): 193-200. DING S H, FANG S Z, TIAN Y, et al. Analysis and evaluation on physicochemical properties of poplar biochar at different pyrolysis temperatures [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(6): 193-200(in Chinese).
[20] BARKER J D, SHARP M J, TURNER R J. Using synchronous fluorescence spectroscopy and principal components analysis to monitor dissolved organic matter dynamics in a glacier system [J]. Hydrological Processes, 2009, 23(10): 1487-1500. doi: 10.1002/hyp.7274
[21] NODA I, OZAKI Y. Two-dimensional correlation spectroscopy - applications in vibrational and optical spectroscopy[M]. Chichester, UK: John Wiley & Sons, Ltd, 2004.
[22] YAMASHITA Y, JAFFÉ R. Characterizing the interactions between trace metals and dissolved organic matter using Excitation−Emission matrix and parallel factor analysis [J]. Environmental Science & Technology, 2008, 42(19): 7374-7379.