[1] GOLDSTEIN A H, GALBALLY I E. Known and unexplored organic constituents in the earth's atmosphere [J]. Environmental Science & Technology, 2007, 41(5): 1514-1521.
[2] NOZIÈRE B, KALBERER M, CLAEYS M, et al. The molecular identification of organic compounds in the atmosphere: State of the art and challenges [J]. Chemical Reviews, 2015, 115(10): 3919-3983. doi: 10.1021/cr5003485
[3] IAKOVIDES M, APOSTOLAKI M, STEPHANOU E G. PAHs, PCBs and organochlorine pesticides in the atmosphere of Eastern Mediterranean: Investigation of their occurrence, sources and gas-particle partitioning in relation to air mass transport pathways [J]. Atmospheric Environment, 2021, 244: 117931. doi: 10.1016/j.atmosenv.2020.117931
[4] MIGLIORANZA K S B, ONDARZA P M, COSTA P G, et al. Spatial and temporal distribution of persistent organic pollutants and current use pesticides in the atmosphere of Argentinean Patagonia [J]. Chemosphere, 2021, 266: 129015. doi: 10.1016/j.chemosphere.2020.129015
[5] VUONG Q T, THANG P Q, NGUYEN T N T, et al. Seasonal variation and gas/particle partitioning of atmospheric halogenated polycyclic aromatic hydrocarbons and the effects of meteorological conditions in Ulsan, South Korea [J]. Environmental Pollution, 2020, 263: 114592. doi: 10.1016/j.envpol.2020.114592
[6] ARAKI A, SAITO I, KANAZAWA A, et al. Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants [J]. Indoor Air, 2014, 24(1): 3-15. doi: 10.1111/ina.12054
[7] JAROSIEWICZ M, DUCHNOWICZ P, WŁUKA A, et al. Evaluation of the effect of brominated flame retardants on hemoglobin oxidation and hemolysis in human erythrocytes [J]. Food and Chemical Toxicology, 2017, 109: 264-271. doi: 10.1016/j.fct.2017.09.016
[8] ZHANG Y, ZHENG X B, WEI L F, et al. The distribution and accumulation of phosphate flame retardants (PFRs) in water environment [J]. Science of the Total Environment, 2018, 630: 164-170. doi: 10.1016/j.scitotenv.2018.02.215
[9] HOLLENDER J, SCHYMANSKI E L, SINGER H P, et al. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? [J]. Environmental Science & Technology, 2017, 51(20): 11505-11512.
[10] 毛佳迪, 于南洋, 于红霞, 等. 环境中有机污染物的高通量筛查技术研究进展 [J]. 环境化学, 2020, 39(1): 156-165. doi: 10.7524/j.issn.0254-6108.2019021303 MAO J D, YU N Y, YU H X, et al. Research process of the high-throughput screening for identification of environmental organic pollutants [J]. Environmental Chemistry, 2020, 39(1): 156-165(in Chinese). doi: 10.7524/j.issn.0254-6108.2019021303
[11] PENG H, CHEN C L, CANTIN J, et al. Untargeted screening and distribution of organo-iodine compounds in sediments from lake Michigan and the Arctic Ocean [J]. Environmental Science & Technology, 2016, 50(18): 10097-10105.
[12] MACARRON R, BANKS M N, BOJANIC D, et al. Impact of high-throughput screening in biomedical research [J]. Nature Reviews Drug Discovery, 2011, 10(3): 188-195. doi: 10.1038/nrd3368
[13] PENG H, CHEN C L, CANTIN J, et al. Untargeted screening and distribution of organo-bromine compounds in sediments of lake Michigan [J]. Environmental Science & Technology, 2016, 50(1): 321-330.
[14] ZHANG F, WANG H Y, ZHANG L, et al. Suspected-target pesticide screening using gas chromatography-quadrupole time-of-flight mass spectrometry with high resolution deconvolution and retention index/mass spectrum library [J]. Talanta, 2014, 128: 156-163. doi: 10.1016/j.talanta.2014.04.068
[15] DOMÍNGUEZ I, ARREBOLA F J, MARTÍNEZ VIDAL J L, et al. Assessment of wastewater pollution by gas chromatography and high resolution Orbitrap mass spectrometry [J]. Journal of Chromatography A, 2020, 1619: 460964. doi: 10.1016/j.chroma.2020.460964
[16] BACKE W J. Suspect and non-target screening of reuse water by large-volume injection liquid chromatography and quadrupole time-of-flight mass spectrometry [J]. Chemosphere, 2021, 266: 128961. doi: 10.1016/j.chemosphere.2020.128961
[17] WANG Y J, GAO W, WANG Y W, et al. Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF MS during wastewater treatment processes [J]. Journal of Hazardous Materials, 2019, 376: 153-159. doi: 10.1016/j.jhazmat.2019.05.031
[18] MAZUR D M, DETENCHUK E A, SOSNOVA A A, et al. GC-HRMS with complementary ionization techniques for target and non-target screening for chemical exposure: Expanding the insights of the air pollution markers in Moscow snow [J]. Science of the Total Environment, 2021, 761: 144506. doi: 10.1016/j.scitotenv.2020.144506
[19] CHENG Z, QIU X H, SHI X D, et al. Identification of organosiloxanes in ambient fine particulate matters using an untargeted strategy via gas chromatography and time-of-flight mass spectrometry [J]. Environmental Pollution, 2021, 271: 116128. doi: 10.1016/j.envpol.2020.116128
[20] ZHANG X M, SAINI A, HAO C Y, et al. Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges [J]. TrAC Trends in Analytical Chemistry, 2020, 132: 116052. doi: 10.1016/j.trac.2020.116052
[21] YANG L L, WU J J, ZHENG M H, et al. Non-target screening of organic pollutants and target analysis of halogenated polycyclic aromatic hydrocarbons in the atmosphere around metallurgical plants by high-resolution GC/Q-TOF-MS [J]. Environmental Sciences Europe, 2020, 32(1): 1-14. doi: 10.1186/s12302-019-0282-1
[22] EU. SANTE/12682/2019 Method Validation & Quality Control Procedures for Pesticide Residues Analysis in Food & Feed[S]. 2019.
[23] FUJII M, SHINOHARA N, LIM A, et al. A study on emission of phthalate esters from plastic materials using a passive flux sampler [J]. Atmospheric Environment, 2003, 37(39/40): 5495-5504.
[24] WANG X Q, HAN B, WU P F, et al. Dibutyl phthalate induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway [J]. Environmental Pollution, 2020, 267: 115564. doi: 10.1016/j.envpol.2020.115564
[25] CHEN H, CHEN K, QIU X C, et al. The reproductive toxicity and potential mechanisms of combined exposure to dibutyl phthalate and diisobutyl phthalate in male zebrafish (Danio rerio) [J]. Chemosphere, 2020, 258: 127238. doi: 10.1016/j.chemosphere.2020.127238
[26] CHENG J J, WAN Q, GE J, et al. Major factors dominating the fate of dibutyl phthalate in agricultural soils [J]. Ecotoxicology and Environmental Safety, 2019, 183: 109569. doi: 10.1016/j.ecoenv.2019.109569
[27] YOST E E, EULING S Y, WEAVER J A, et al. Hazards of diisobutyl phthalate (DIBP) exposure: A systematic review of animal toxicology studies [J]. Environment International, 2019, 125: 579-594. doi: 10.1016/j.envint.2018.09.038
[28] 王尧天, 张海燕, 史建波, 等. 六氯丁二烯分析方法研究进展 [J]. 色谱, 2021, 39(1): 46-56. doi: 10.3724/SP.J.1123.2020.05019 WANG Y T, ZHANG H Y, SHI J B, et al. Research progress on analytical methods for the determination of hexachlorobutadiene [J]. Chinese Journal of Chromatography, 2021, 39(1): 46-56(in Chinese). doi: 10.3724/SP.J.1123.2020.05019
[29] LIU Y L, HU H Y, ZANAROLI G, et al. A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways [J]. Journal of Hazardous Materials, 2021, 403: 123956. doi: 10.1016/j.jhazmat.2020.123956
[30] ZHANG W W, WANG P, ZHU Y, et al. Occurrence and human exposure assessment of organophosphate esters in atmospheric PM2.5 in the Beijing-Tianjin-Hebei region, China [J]. Ecotoxicology and Environmental Safety, 2020, 206: 111399. doi: 10.1016/j.ecoenv.2020.111399
[31] 董小艳, 王琼, 杨一兵, 等. 2017年春节期间北京市城区和郊区大气PM2.5及其中多环芳烃的污染特征 [J]. 环境化学, 2018, 37(10): 2191-2198. doi: 10.7524/j.issn.0254-6108.2017122503 DONG X Y, WANG Q, YANG Y B, et al. Characterization of ambient PM2.5 and PAHs during 2017 Spring Festival in urban and suburb areas of Beijing [J]. Environmental Chemistry, 2018, 37(10): 2191-2198(in Chinese). doi: 10.7524/j.issn.0254-6108.2017122503
[32] WU Y, YANG L, ZHENG X, et al. Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing [J]. Science of the Total Environment, 2014, 470/471: 76-83. doi: 10.1016/j.scitotenv.2013.09.066
[33] TUYEN L H, TUE N M, TAKAHASHI S, et al. Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: Occurrence, distribution and in vitro toxicity evaluation [J]. Environmental Pollution, 2014, 194: 272-280. doi: 10.1016/j.envpol.2014.07.029
[34] LUI K H, BANDOWE B A M, HO S S H, et al. Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning [J]. Environmental Pollution, 2016, 213: 524-532. doi: 10.1016/j.envpol.2016.02.053
[35] BANDOWE B A M, MEUSEL H, HUANG R J, et al. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment [J]. Science of the Total Environment, 2014, 473/474: 77-87. doi: 10.1016/j.scitotenv.2013.11.108