[1] O'SULLIVAN A D, WICKE D, HENGEN T J, et al. Life Cycle Assessment modelling of stormwater treatment systems [J]. Journal of Environmental Management, 2015, 149: 236-244.
[2] ZHOU N Q, ZHAO S. Urbanization process and induced environmental geological hazards in China [J]. Natural Hazards, 2013, 67(2): 797-810. doi: 10.1007/s11069-013-0606-1
[3] WANG Y Q, XIAN C F, JIANG Y Q, et al. Anthropogenic reactive nitrogen releases and gray water footprints in urban water pollution evaluation: The case of Shenzhen City, China [J]. Environment, Development and Sustainability, 2020, 22(7): 6343-6361. doi: 10.1007/s10668-019-00482-6
[4] LUO L, DUAN N, WANG X C, et al. New thermodynamic entropy calculation based approach towards quantifying the impact of eutrophication on water environment [J]. Science of the Total Environment, 2017, 603/604: 86-93. doi: 10.1016/j.scitotenv.2017.06.069
[5] XU L, XU S L, HAN X Y, et al. Spatial heterogeneity and long-term dynamics of cladoceran ephippia in a monsoonal reservoir, driven by hydrology and eutrophication [J]. Journal of Paleolimnology, 2017, 58(4): 571-584. doi: 10.1007/s10933-017-9993-8
[6] 吕纯剑, 高红杰, 宋永会, 等. 潮汐流-潜流组合人工湿地微生物群落多样性研究 [J]. 环境科学学报, 2018, 38(6): 2140-2149. LÜ C J, GAO H J, SONG Y H, et al. Microbial community diversity in the combined tide flow-subsurface flow constructed wetland [J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2140-2149(in Chinese).
[7] STOTTMEISTER U, WIEßNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J]. Biotechnology Advances, 2003, 22(1/2): 93-117.
[8] 杨敦, 周琪. 人工湿地脱氮技术的机理及应用 [J]. 中国给水排水, 2003, 19(1): 23-24. doi: 10.3321/j.issn:1000-4602.2003.01.007 YANG D, ZHOU Q. Mechanism and application of nitrogen removal technology in constructed wetland [J]. China Water & Wastewater, 2003, 19(1): 23-24(in Chinese). doi: 10.3321/j.issn:1000-4602.2003.01.007
[9] 黄杉, 怀静, 吴娟, 等. 碳源补充促进人工湿地脱氮研究进展 [J]. 水处理技术, 2018, 44(1): 13-16. HUANG S, HUAI J, WU J, et al. Research progress of nitrogen removal promotion in constructed wetland system by carbon addition [J]. Technology of Water Treatment, 2018, 44(1): 13-16(in Chinese).
[10] ZHANG S N, XIAO R L, LIU F, et al. Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms [J]. Ecological Engineering, 2016, 97: 363-369. doi: 10.1016/j.ecoleng.2016.10.021
[11] DU L, TRINH X, CHEN Q R, et al. Enhancement of microbial nitrogen removal pathway by vegetation in Integrated Vertical-Flow Constructed Wetlands (IVCWs) for treating reclaimed water [J]. Bioresource Technology, 2018, 249: 644-651. doi: 10.1016/j.biortech.2017.10.074
[12] HE Q L, ZHOU J, WANG H Y, et al. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor [J]. Bioresource Technology, 2016, 214: 1-8. doi: 10.1016/j.biortech.2016.04.088
[13] 国家环境保护总局, 水和废水监测分析方法. 水和废水监测分析方法[M]. 4版. 北京: 中国环境出版社, 2002.
[14] 夏磊. 强化潜流人工湿地脱氮除磷过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. XIA L. Study on the processes of nitrogen and phosphorus removal by enhanced subsurface flow constructed wetland[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
[15] 陈秀荣, 周琪. 人工湿地脱氮除磷特性研究 [J]. 环境污染与防治, 2005, 27(7): 526-529. CHEN X R, ZHOU Q. Study on the characteristics of N/P removal in constructed wetland [J]. Environmental Pollution & Control, 2005, 27(7): 526-529(in Chinese).
[16] 张萍, 和丽萍, 陈静, 等. 污染负荷对人工湿地污染处理效果的影响 [J]. 环境科学导刊, 2013, 32(1): 8-12. doi: 10.3969/j.issn.1673-9655.2013.01.003 ZHANG P, HE L P, CHEN J, et al. The impact of pollution load on the pollution treatmentefficiency of the artificial wetland [J]. Environmental Science Survey, 2013, 32(1): 8-12(in Chinese). doi: 10.3969/j.issn.1673-9655.2013.01.003
[17] 汤显强, 黄岁樑. 人工湿地去污机理及其国内外应用现状 [J]. 水处理技术, 2007, 33(2): 9-13. doi: 10.3969/j.issn.1000-3770.2007.02.003 TANG X Q, HUANG S L. Mechanisms of pollutant removal in constructed wetlands and their applications both at home and abroad [J]. Technology of Water Treatment, 2007, 33(2): 9-13(in Chinese). doi: 10.3969/j.issn.1000-3770.2007.02.003
[18] 张亚琼. 不同进水方式潮汐流人工湿地污染物去除研究[D]. 北京: 中国林业科学研究院, 2015. ZHANG Y Q. Research of pollutant removal in tidal flow constructed wetlands based on different inflows way[D]. Beijing: Chinese Academy of Forestry, 2015(in Chinese).
[19] 李玲丽. 复合人工湿地脱氮途径及微生物多样性研究[D]. 重庆: 重庆大学, 2015. LI L L. Nitrogen removal pathways and microbial diversity in A hybrid constructed wetland[D]. Chongqing: Chongqing University, 2015(in Chinese).
[20] WU Y H, HAN R, YANG X N, et al. Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system [J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6917-6926. doi: 10.1007/s00253-016-7526-4
[21] ZHANG Y Y, DONG J D, YANG B, et al. Bacterial community structure of mangrove sediments in relation to environmental variables accessed by 16S rRNA gene-denaturing gradient gel electrophoresis fingerprinting [J]. Scientia Marina, 2009, 73(3): 487-498. doi: 10.3989/scimar.2009.73n3487
[22] LI X, LI Y Y, LI Y, et al. Diversity and distribution of bacteria in a multistage surface flow constructed wetland to treat swine wastewater in sediments [J]. Applied Microbiology and Biotechnology, 2018, 102(24): 10755-10765. doi: 10.1007/s00253-018-9426-2
[23] MIAO Y, LIAO R H, ZHANG X X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater [J]. Water Research, 2015, 76: 43-52. doi: 10.1016/j.watres.2015.02.042
[24] LI C, REN H Q, XU M, et al. Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis [J]. Bioresource Technology, 2015, 175: 545-552. doi: 10.1016/j.biortech.2014.10.156
[25] LI L Z, HE C G, JI G D, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints [J]. Ecological Engineering, 2015, 81: 266-271. doi: 10.1016/j.ecoleng.2015.04.073
[26] XU M, LIU W J, LI C, et al. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater [J]. Environmental Science and Pollution Research, 2016, 23(11): 10990-11001. doi: 10.1007/s11356-016-6181-8
[27] BELLINI M I, GUTIÉRREZ L, TARLERA S, et al. Isolation and functional analysis of denitrifiers in an aquifer with high potential for denitrification [J]. Systematic and Applied Microbiology, 2013, 36(7): 505-516. doi: 10.1016/j.syapm.2013.07.001
[28] KANG Y, ZHANG J, XIE H J, et al. Enhanced nutrient removal and mechanisms study in benthic fauna added surface-flow constructed wetlands: The role of Tubifex tubifex [J]. Bioresource Technology, 2017, 224: 157-165. doi: 10.1016/j.biortech.2016.11.035
[29] DALAHMEH S S, JÖNSSON H, HYLANDER L D, et al. Dynamics and functions of bacterial communities in bark, charcoal and sand filters treating greywater [J]. Water Research, 2014, 54: 21-32. doi: 10.1016/j.watres.2014.01.019
[30] 张弘弢, 谌书, 王彬, 等. 组合式人工湿地对分散型生活污水净化效果及其微生物群落结构特征 [J]. 环境化学, 2019, 38(11): 2535-2545. doi: 10.1002/etc.4547 ZHANG H T, CHEN S, WANG B, et al. Purification effect of combined artificial wetlands on dispersed domestic sewage and analysis of microbial community structure [J]. Environmental Chemistry, 2019, 38(11): 2535-2545(in Chinese). doi: 10.1002/etc.4547
[31] JIA F, LAI C, CHEN L, et al. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater [J]. Chemosphere, 2017, 185: 1-10. doi: 10.1016/j.chemosphere.2017.06.132
[32] YAO S, NI J R, MA T, et al. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2 [J]. Bioresource Technology, 2013, 139: 80-86. doi: 10.1016/j.biortech.2013.03.189
[33] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria [J]. Nature, 2015, 528(7583): 504-509. doi: 10.1038/nature16461
[34] 李青, 成小英. 不同填料生物反应器中脱氮微生物群落比较分析 [J]. 安全与环境学报, 2017, 17(6): 2360-2365. LI Q, CHENG X Y. Discriminative analysis of denitrifying microbial communities in bioreactors with different materials as biofilm carriers [J]. Journal of Safety and Environment, 2017, 17(6): 2360-2365(in Chinese).
[35] 王庆海, 夏凡, 李翠, 等. 黄菖蒲对水中阿特拉津污染的去除贡献研究 [J]. 农业环境科学学报, 2020, 39(11): 2613-2620. doi: 10.11654/jaes.2020-0543 WANG Q H, XIA F, LI C, et al. Contribution of Iris pseudacorus to atrazine dissipation in water: Effects of initial atrazine concentrations [J]. Journal of Agro-Environment Science, 2020, 39(11): 2613-2620(in Chinese). doi: 10.11654/jaes.2020-0543
[36] 代蕾. 沉水植物对不同水质的净化作用及相关机理研究[D]. 重庆: 重庆大学, 2018. DAI L. Purification and related mechanism of submerged macrophytes on different water quality[D]. Chongqing: Chongqing University, 2018(in Chinese).
[37] 胡世琴. 人工湿地不同植被净化污水效果及其氮磷累积研究 [J]. 水土保持研究, 2017, 24(1): 200-206. HU S Q. Research on domestic sewage purification efficiencies of plants and N, P accumulation in biomass in constructed wetland [J]. Research of Soil and Water Conservation, 2017, 24(1): 200-206(in Chinese).