[1] 柳儒, 方利平, 李季. 磁性绿锈吸附固定厌氧水体磷酸盐及其影响因素 [J]. 环境科学与技术, 2019, 42(12): 53-60. LIU R, FANG L P, LI J. Phosphate sequestration by magnetic green rusts in anarobic conditions and its implication for eutrophication control [J]. Environmental Science & Technology, 2019, 42(12): 53-60(in Chinese).
[2] 卫凯平, 武慧君, 黄莉, 等. 农业生产系统氮磷环境影响分析: 以安徽省为例 [J]. 农业环境科学学报, 2018, 37(8): 1802-1810. doi: 10.11654/jaes.2018-0053 WEI K P, WU H J, HUANG L, et al. Analysis of environmental impact derived from nitrogen and phosphorus in agricultural production systems: A case study of Anhui Province [J]. Journal of Agro-Environment Science, 2018, 37(8): 1802-1810(in Chinese). doi: 10.11654/jaes.2018-0053
[3] HUANG W Y, ZHANG Y M, LI D. Adsorptive removal of phosphate from water using mesoporous materials: A review [J]. Journal of Environmental Management, 2017, 193: 470-482.
[4] 王方嘉, 徐武松, 郑文杰, 等. 改性秸秆去除水体污染物的研究进展 [J]. 化学与生物工程, 2020, 37(9): 13-16,26. doi: 10.3969/j.issn.1672-5425.2020.09.03 WANG F J, XU W S, ZHENG W J, et al. Research progress in removal of water pollutant by modified straw [J]. Chemistry & Bioengineering, 2020, 37(9): 13-16,26(in Chinese). doi: 10.3969/j.issn.1672-5425.2020.09.03
[5] 吴小龙, 林建伟, 张宏华, 等. 物理扰动对锆改性沸石改良底泥磷吸附和移动的影响 [J]. 环境化学, 2019, 38(5): 1119-1127. WU X L, LIN J W, ZHANG H H, et al. Effect of physical disturbance on phosphorus sorption and immobilization onto/in zirconium-modified zeolite-amended sediments [J]. Environmental Chemistry, 2019, 38(5): 1119-1127(in Chinese).
[6] HARIJAN D K L, CHANDRA V. Akaganeite nanorods decorated graphene oxide sheets for removal and recovery of aqueous phosphate [J]. Journal of Water Process Engineering, 2017, 19: 120-125. doi: 10.1016/j.jwpe.2017.07.019
[7] CHEN L, LI Y Z, SUN Y B, et al. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability [J]. Chemical Engineering Journal, 2019, 360: 342-348. doi: 10.1016/j.cej.2018.11.234
[8] 罗元, 谢坤, 张克强, 等. 生物炭及其金属改性材料脱除水体磷酸盐研究进展 [J]. 环境化学, 2020, 39(8): 2175-2186. doi: 10.7524/j.issn.0254-6108.2019052701 LUO Y, XIE K, ZHANG K Q, et al. Research progress on removal of phosphate from aqueous solution by biochar and its metal modified materials [J]. Environmental Chemistry, 2020, 39(8): 2175-2186(in Chinese). doi: 10.7524/j.issn.0254-6108.2019052701
[9] URE D, AWADA A, FROWLEY N, et al. Greenhouse tomato plant roots/carboxymethyl cellulose method for the efficient removal and recovery of inorganic phosphate from agricultural wastewater [J]. Journal of Environmental Management, 2019, 233: 258-263.
[10] 李甫, 董永春, 程博闻, 等. 改性聚丙烯腈纤维与金属离子的配位反应及其应用进展 [J]. 纺织学报, 2017, 38(6): 143-150. LI F, DONG Y C, CHENG B W, et al. Recent progress in coordination of modified polyacrylonitrile fiber with metal ions and applications [J]. Journal of Textile Research, 2017, 38(6): 143-150(in Chinese).
[11] 张超, 李梦星, 周清, 等. 聚丙烯腈螯合纤维的研究进展 [J]. 化工新型材料, 2015, 43(11): 239-241. ZHANG C, LI M X, ZHOU Q, et al. Progress in polyacrylonitrile chelated fiber [J]. New Chemical Materials, 2015, 43(11): 239-241(in Chinese).
[12] LI G W, XIAO J, ZHANG W Q. ChemInform abstract: Knoevenagel condensation catalyzed by a tertiary-amine functionalized polyacrylonitrile fiber [J]. Green Chemistry, 2011, 13(7): 1828-1836.
[13] SHI X L, SUN B, CHEN Y J, et al. Tuning anion species and chain length of ligands grafted on the fiber for an efficient polymer-supported Ni(II) complex catalyst in one-pot multicomponent A3-coupling [J]. Journal of Catalysis, 2019, 372: 321-329. doi: 10.1016/j.jcat.2019.03.020
[14] 王力, 陈兆文, 苗雷, 等. 聚丙烯腈基改性功能纤维选择性吸附饮用水中Cu2+研究 [J]. 合成纤维工业, 2019, 42(5): 51-53. doi: 10.3969/j.issn.1001-0041.2019.05.011 WANG L, CHEN Z W, MIAO L, et al. Selective adsorption of polyacrylonitrile modified functional fiber for Cu2+ in drinking water [J]. China Synthetic Fiber Industry, 2019, 42(5): 51-53(in Chinese). doi: 10.3969/j.issn.1001-0041.2019.05.011
[15] WANG B, CHEN P Y, ZHAO R X, et al. Carbon-dot modified polyacrylonitrile fibers: Recyclable materials capable of selectively and reversibly adsorbing small-sized anionic dyes [J]. Chemical Engineering Journal, 2020, 391: 123484. doi: 10.1016/j.cej.2019.123484
[16] XU W S, ZHENG W J, WANG F J, et al. Using iron ion-loaded aminated polyacrylonitrile fiber to efficiently remove wastewater phosphate [J]. Chemical Engineering Journal, 2021, 403: 126349. doi: 10.1016/j.cej.2020.126349
[17] XU G, XU W S, TIAN S, et al. Enhanced phosphate removal from wastewater by recyclable fiber supported quaternary ammonium salts: Highlighting the role of surface polarity [J]. Chemical Engineering Journal, 2021, 416: 127889. doi: 10.1016/j.cej.2020.127889
[18] LI J, LIB, HUANG H M, et al. Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge [J]. Science of the Total Environment, 2019, 687: 460-469. doi: 10.1016/j.scitotenv.2019.05.400
[19] 魏凯. 磷肥工业废水处理及回用 [J]. 安徽化工, 2020, 46(2): 101-102,11. doi: 10.3969/j.issn.1008-553X.2020.02.027 WEI K. Phosphate fertilizer industrial wastewater treatment and reuse [J]. Anhui Chemical Industry, 2020, 46(2): 101-102,11(in Chinese). doi: 10.3969/j.issn.1008-553X.2020.02.027
[20] NATARAJ S K, KIM B H, DELA CRUZ M, et al. Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning [J]. Materials Letters, 2009, 63(2): 218-220. doi: 10.1016/j.matlet.2008.09.060
[21] GAO R J, XU G, ZHENG L S, et al. A highly selective and sensitive reusable colorimetric sensor for Ag+ based on thiadiazole-functionalized polyacrylonitrile fiber [J]. Journal of Materials Chemistry C, 2016, 4(25): 5996-6006. doi: 10.1039/C6TC00621C
[22] JIANG J X, KIM D I, DORJI P, et al. Phosphorus removal mechanisms from domestic wastewater by membrane capacitive deionization and system optimization for enhanced phosphate removal [J]. Process Safety and Environmental Protection, 2019, 126: 44-52. doi: 10.1016/j.psep.2019.04.005
[23] 吴俊麟, 林建伟, 詹艳慧, 等. 镁铁层状双金属氢氧化物对磷酸盐的吸附作用及对内源磷释放的控制效果及机制 [J]. 环境科学, 2020, 41(1): 273-283. WU J L, LIN J W, ZHAN Y H, et al. Adsorption of phosphate on Mg/Fe layered double hydroxides(Mg/Fe-LDH)and use of Mg/Fe-LDH as an amendment for controlling phosphorus release from sediments [J]. Environmental Science, 2020, 41(1): 273-283(in Chinese).
[24] LIU X N, SHEN F, QI X H. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw [J]. Science of the Total Environment, 2019, 666: 694-702. doi: 10.1016/j.scitotenv.2019.02.227
[25] ZHOU K, WU B R, SU L H, et al. Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger [J]. Chemical Engineering Journal, 2018, 345: 640-647. doi: 10.1016/j.cej.2018.01.091
[26] ANDRÉS E, ARAYA F, VERA I, et al. Phosphate removal using zeolite in treatment wetlands under different oxidation-reduction potentials [J]. Ecological Engineering, 2018, 117: 18-27. doi: 10.1016/j.ecoleng.2018.03.008
[27] ZHANG B, CHEN N, FENG C P, et al. Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe(III) complex sorbents: Characteristic and mechanism [J]. Chemical Engineering Journal, 2018, 353: 361-372. doi: 10.1016/j.cej.2018.07.092
[28] WANG Y, XIE X M, CHEN X L, et al. Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption [J]. Journal of Hazardous Materials, 2020, 396: 122626. doi: 10.1016/j.jhazmat.2020.122626