[1] LIM SY, SHEN W, GAO Z. Carbon quantum dots and their applications [J]. Chemical Society Reviews, 2015, 44: 362-381. doi: 10.1039/C4CS00269E
[2] 余致汐, 贺南南, 陈欢, 等. 甲壳素复合石墨相氮化碳的制备及光催化杀菌性能 [J]. 环境化学, 2020, 39(5): 1271-1278. doi: 10.7524/j.issn.0254-6108.2019081206 YU Z X, HE N N, CHEN H, et al. Preparation of chitin composite graphite phase carbonitride and its photocatalytic sterilization performance [J]. Environmental Chemistry, 2020, 39(5): 1271-1278(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081206
[3] El-KHATIB A M, YOUSEFN S, GHATASS Z F, et al. Synthesized silver carbon nanotubes and zinc oxide nanoparticles and their ability to remove methylene blue dye [J]. Journal of Nanoneuroscience, 2019, 56: 1-16.
[4] YUE L, LI H, SUN Q, et al. Red-Emissive ruthenium-containing carbon dots for bioimaging and photodynamic cancer therapy [J]. ACS Applied Nano Materials, 2020, 3: 869-876.
[5] CHAMORRO-POSADA P, DANTE R C, VAZQUEZ-CABO J, et al. Experimental and theoretical investigations on a CVD grown thin film of polymeric carbon nitride and its structure [J]. Diamond and Related Materials, 2021, 111: 108169. doi: 10.1016/j.diamond.2020.108169
[6] LIU J, LIU Y, LIU N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway [J]. Science, 2015, 347: 970-974. doi: 10.1126/science.aaa3145
[7] ZHU J, XIAO P, LI H, et al. Graphitic carbon nitride: synthesis, properties, and applications in catalysis [J]. ACS Applied Materials & Interfaces, 2014, 6: 16449-16465.
[8] 章家立, 李阳, 彭小明, 等. g-C3N4在水环境污染物去除和检测方面的应用研究进展 [J]. 华东交通大学学报, 2019, 36(1): 109-116. ZHANG J L, LI Y, PENG X M, et al. On applications of graphitic carbon nitride in pollutant removal and detection in water environment [J]. Journal of East China Jiaotong University, 2019, 36(1): 109-116(in Chinese).
[9] ZHANG J, CHEN Y, WANG X. Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications [J]. Energy & Environmental Science, 2015, 8: 3092-3108.
[10] 马贺成, 刘建军, 于迎春, 等. 二维石墨相氮化碳纳米片的制备及其在光催化领域的研究进展 [J]. 应用化学, 2019, 36(3): 259-268. doi: 10.11944/j.issn.1000-0518.2019.03.180241 MA H C, LIU J J, YU Y C, et al. Research progress in preparation and photocatalysis of two-dimensional graphitic carbon nitride nanosheets [J]. Chinese Journal of Applied Chemistry, 2019, 36(3): 259-268(in Chinese). doi: 10.11944/j.issn.1000-0518.2019.03.180241
[11] LIU S, TIAN J, WANG L, et al. A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose [J]. RSC Advances, 2012, 2: 411-413. doi: 10.1039/C1RA00709B
[12] ZHANG P, LI X, SHAO C, et al. Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis [J]. Journal of Materials Chemistry A, 2015, 3: 3281-3284. doi: 10.1039/C5TA00202H
[13] ASAITHAMBI S, SAKTHIVEL P, KARUPPAIAH M, et al. The bifunctional performance analysis of synthesized Ce doped SnO2/g-C3N4 composites for asymmetric supercapacitor and visible light photocatalytic applications [J]. Journal of Alloys and Compounds, 2021: 158807.
[14] LIU Y, WANG Q, LEI J, et al. Anodic electrochemiluminescence of graphitic-phase C3N4 nanosheets for sensitive biosensing [J]. Talanta, 2014, 122: 130-134. doi: 10.1016/j.talanta.2014.01.018
[15] RONG M, LIN L, SONG X, et al. Fluorescence sensing of chromium(VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch” [J]. Biosensors & Bioelectronics, 2015, 68: 210-217.
[16] 陈珠灵, 林敏秀, 宋志平, 等. 基于石墨相氮化碳量子点直接荧光猝灭法检测碘离子的研究 [J]. 光谱学与光谱分析, 2019, 39(7): 2029-2033. CHEN Z L, LIN M X, SONG Z P, et al. Study of direct fluorescencence quenching of graphitic carbon nitride for the detection of iodine ions [J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2029-2033(in Chinese).
[17] ZHANG H, HUANG Y, HU S, et al. Fluorescent probes for “off-on” sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets [J]. Journal of Materials Chemistry C, 2015, 3: 2093-2100. doi: 10.1039/C4TC02394C
[18] ABDOLMOHAMMAD-ZADEH H, RAHIMPOUR E. A novel chemosensor based on graphitic carbon nitride quantum dots and potassium ferricyanidechemiluminescence system for Hg(Ⅱ) ion detection [J]. Sensors and Actuators B: Chemical, 2016, 225: 258-266. doi: 10.1016/j.snb.2015.11.052
[19] HAN J, ZOU HY, GAO MX, et al. A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin [J]. Talanta, 2016, 148: 279-284. doi: 10.1016/j.talanta.2015.10.038
[20] XIE H, DONG J, DUAN J, et al. Magnetic nanoparticles-based immunoassay for aflatoxin B1 using porous g-C3N4 nanosheets as fluorescence probes [J]. Sensors and Actuators B:Chemical, 2019, 278: 147-152. doi: 10.1016/j.snb.2018.09.089
[21] QIAO F, WANG J, AI S, et al. As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine [J]. Sensors and Actuators B: Chemical, 2015, 216: 418-427. doi: 10.1016/j.snb.2015.04.074
[22] ZHENG H B, DING J, ZHENG S J, et al. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples [J]. Talanta, 2016, 148: 46-53. doi: 10.1016/j.talanta.2015.10.059
[23] DONG Y, LI G, ZHOU N, et al. Graphene quantum dots as a green and facile sensor for free chlorine in drinking water [J]. Analytical Chemistry, 2012, 84: 8378-8382. doi: 10.1021/ac301945z
[24] ZHOU M, LI T, ZU M, et al. Membrane-based colorimetric flow-injection system for online free chlorine monitoring in drinking water [J]. Sensors and Actuators B:Chemical, 2021, 327: 128905. doi: 10.1016/j.snb.2020.128905
[25] MA Z, CHEN X, WANG C, et al. A novel ratiometric fluorescence probe for hypochlorite detection and its application in cell imaging [J]. Journal of Molecular Structure, 2020, 1221: 128812. doi: 10.1016/j.molstruc.2020.128812
[26] CLAVER J B, MIRON M C V, CAPITAN-VALLVEY L F. Determination of hypochlorite in water using a chemiluminescent test strip [J]. Analytica Chimica Acta, 2004, 522: 267-273. doi: 10.1016/j.aca.2004.06.051
[27] CHEN P, WEI W Z, YAO S Z. Different valency chlorine species analysis by non-suppressed ion-chromatography with double cell quartz crystal detector [J]. Talanta, 1999, 49: 571-576. doi: 10.1016/S0039-9140(99)00041-7
[28] WATANABE T, IDEHARA T, YOSHIMURA Y, et al. Simultaneous determination of chlorine dioxide and hypochlorite in water by high-performance liquid chromatography [J]. Journal of Chromatography A, 1998, 796: 397-400. doi: 10.1016/S0021-9673(97)01009-1
[29] POBOZY E, PYRZYNSKA K, SZOSTEK B, et al. Flow-injection spectrophotometric determination of free residual chlorine in waters with 3, 3′-dimethylnaphtidine [J]. Microchemical Journal, 1995, 51: 379-86. doi: 10.1006/mchj.1995.1044
[30] ZHOU J, YANG Y, ZHANG C. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission [J]. Chemical Communications, 2013, 49: 8605-8607. doi: 10.1039/c3cc42266f
[31] LIN L, RONG M, LU S, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution [J]. Nanoscale, 2015, 7: 1872-1878. doi: 10.1039/C4NR06365A
[32] CAO X, MA J, LIN Y, et al. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions [J]. Spectrochimica Acta Part A, 2015, 151: 875-880. doi: 10.1016/j.saa.2015.07.034
[33] ANIKUMAR P, WANG X, CAO L, et al. Toward quantitatively fluorescent carbon-based “quantum” dots [J]. Nanoscale, 2011, 3: 2023-2027. doi: 10.1039/c0nr00962h
[34] MESSINA F, SCIORTINO L, POPESCU R, et al. Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C3N4 nanocrystallinestructure [J]. Journal of Materials Chemistry C, 2016, 4: 2598-2605. doi: 10.1039/C5TC04096E
[35] LIU J, SHANGGUAN M, ZENG X, et al. Phosphorescent iridium (Ⅲ) complex for efficient sensing of hypochlorite and imaging in living cells [J]. Analytical Biochemistry, 2020, 592: 113573. doi: 10.1016/j.ab.2019.113573
[36] SHIRAISHI Y, YAMADA C, TAKAGI S, et al. Fluorometric and colorimetric detection of hypochlorous acid and hypochlorite by a naphthalimide–dicyanoisophorone conjugate [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2021, 406: 112997. doi: 10.1016/j.jphotochem.2020.112997
[37] NING Y, CUI J, LU Y, et al. De novo design and synthesis of a novel colorimetric fluorescent probe based on naphthalenone scaffold for selective detection of hypochlorite and its application in living cells [J]. Sensors and Actuators B:Chemical, 2018, 269: 322-330.
[38] WU H, ZHANG W, WU Y, et al. A 7-diethylaminocoumarin-based chemosensor with barbituric acid for hypochlorite and hydrazine [J]. Microchemical Journal, 2020, 159: 105461. doi: 10.1016/j.microc.2020.105461
[39] ZHANG Y M, FANG H, ZHU W, et al. Ratiometric fluorescent sensor based oxazolo-phenazine derivatives for detect hypochlorite via oxidation reaction and its application in environmental samples [J]. Dyes and Pigments, 2020, 172: 107765. doi: 10.1016/j.dyepig.2019.107765
[40] RHA C J, LEE H, KIM C. Development of an azo-naphthol-based probe for detecting hypochlorite (ClO) via color change in aqueous solution [J]. Inorganic Chemistry Communications, 2020, 121: 108244. doi: 10.1016/j.inoche.2020.108244
[41] WANG H, ZHANG L, GUO X, et al. Comparative study of Cl, N-Cdots and N-Cdots and application for trinitrophenol and ClO sensor and cell-imaging [J]. Analytica Chimica Acta, 2019, 1091: 76-87. doi: 10.1016/j.aca.2019.09.019