[1] WANG Y R, BALKANSKI O, BOUCHER L, et al. Sources, transport and deposition of iron in the global atmosphere [J]. Atmospheric Chemistry and Physics, 2015, 15: 11.
[2] 林明月, 潘大为, 胡雪萍, 等. 烟台近海水体不同形态铁的检测分析 [J]. 环境化学, 2016, 35(2): 297-304. doi: 10.7524/j.issn.0254-6108.2016.02.2015092301 LIN M Y, PAN D W, HU X P, et al. Speciation analysis of iron in Yantai coastal waters [J]. Environmental Chemistry, 2016, 35(2): 297-304(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.02.2015092301
[3] SHI Z, KROM M D, BONNEVILLE S, et al. Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing[J]. Global Biogeochemical Cycles, 201l, 25(2): 52-71.
[4] SHI Z, KROM M D, JICKELLS T D, et al. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review [J]. Aeolian Research, 2012, 5(7): 21-27.
[5] LUO C, MAHOWALD N, BOND T, et al. Combustion iron distribution and deposition [J]. Global Biogeochemical Cycles, 2008, 22(1): 122-131.
[6] SRINIVAS B, SARIN M M, RENGARAJAN R. Atmospheric transport of mineral dust from the lndo-Gangetic Plain: Temporal variability, acid processing, and iron solubility [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(8): 3226-3243. doi: 10.1002/2014GC005395
[7] WIN M S, YONEMOCHI S, WANG Q, et al. Atmospheric HULIS and its ability to mediate the reactive oxygen species (ROS): A review [J]. Journal of Environmental Sciences, 2017, 71(9): 16-34.
[8] GONZALEZ D H, CALA C K, PENG Q, et al. HULIS Enhancement of Hydroxyl Radical Formation from Fe(Ⅱ): Kinetics of Fulvic Acid-Fe(Ⅱ) Complexes in the Presence of Lung Antioxidants [J]. Environmental Science and Technology, 2017, 51(13): 7676.
[9] SUN J, SHEN Z X, CAO J J, et al. Particulate matters emitted from maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction [J]. Atmospheric Research, 2017, 184: 66-76. doi: 10.1016/j.atmosres.2016.10.006
[10] WANG X, SHEN Z X, LIU F B, et al. Saccharides in summer and winter PM2.5 over Xi'an, Northwestern China: Sources, and yearly variations of biomass burning contribution to PM2.5 [J]. Atmospheric Research, 2018, 214: 410-417. doi: 10.1016/j.atmosres.2018.08.024
[11] ZHANG T, SHEN Z X, ZHANG L M, et al. PM2.5 Humic-like substances over Xi'an, China: Optical properties, chemical functional group, and source identification [J]. Atmospheric Research, 2020, 234: 104784. doi: 10.1016/j.atmosres.2019.104784
[12] ZHANG Q, SHEN Z X, CAO J J, et al. Variations in PM2.5, tsp, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi'an, China [J]. Atmospheric Environment, 2015, 112: 64-71. doi: 10.1016/j.atmosenv.2015.04.033
[13] MATSUI H, MAHOWALD N M, MOTEKI N, et al. Anthropogenic combustion iron as a complex climate forcer [J]. Nature Communications, 2018, 9(1): 1593. doi: 10.1038/s41467-018-03997-0
[14] LIN Y C, CHEN J P, HO T Y, et al. Atmospheric iron deposition in the northwestern Pacific Ocean and its adjacent marginal seas: The importance of coal burning [J]. Global Biogeochemical Cycles, 2015, 29(2): 138-159. doi: 10.1002/2013GB004795
[15] SCANZA R A, HAMILTON D S, PEREZ GARCIA-PANDO C, et al. Atmospheric Processing of Iron in Mineral and Combustion Aerosols: Development of an Intermediate-Complexity Mechanism Suitable for Earth System Models [J]. Atmospheric Chemistry and Physics, 2018, 18(19): 1-39.
[16] TRAPP J M, MILLERO F J, PROSPERO J M. Trends in the solubility of iron in dust-dominated aerosols in the equatorial Atlantic trade winds: Importance of iron speciation and sources [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): 1525-2027.
[17] SHEN Z X, ZHANG L M, CAO J J, et al. Chemical composition, sources, and deposition fluxes of water-soluble inorganic ions obtained from precipitation chemistry measurements collected at an urban site in northwest China [J]. J Environ Monit, 2012, 14(11): 3000-3008. doi: 10.1039/c2em30457k
[18] SHEN Z X, RICHARD A, CAO J J, et al. Seasonal variations and evidence for the effectiveness of pollution controls on water-soluble inorganic species in total suspended particulates and fine particulate matter from Xi'an, China [J]. Journal of the Air & Waste Management Association, 2008, 58: 1560-1570.
[19] BEN X, SHI J, QIU S, et al. Solubility of iron in atmospheric aerosols and related influence factors in Qingdao, China [J]. Acta entiae Circumstantiae, 2015, 35(1): 65-71.
[20] ITO A , PERRON M M G , PROEMSE B C , et al. Evaluation of aerosol iron solubility over Australian coastal regions based on inverse modeling: implications of bushfires on bioaccessible iron concentrations in the Southern Hemisphere[J]. Progress in Earth and Planetary Science, 2020, 42: 7.
[21] 徐青. 上海市浦东新区大气细颗粒物中重金属污染特征及来源解析 [J]. 环境监控与预警, 2020, 12(1): 8. doi: 10.3969/j.issn.1674-6732.2020.06.003 XU Q. Characteristics and sources of heavy matels in air fine particulate matter in Pudong new area, Shanghai [J]. Environmental Monitoring and Forewarning, 2020, 12(1): 8(in Chinese). doi: 10.3969/j.issn.1674-6732.2020.06.003
[22] BAKER A R, CROOT P L. Atmospheric and marine controls on aerosol iron solubility in seawater [J]. Marine Chemistry, 2010, 120(1/4): 4-13.
[23] FI H, LIN J, SHANG G, et al. Solubility of iron from combustion source particles in acidic media linked to iron speciation [J]. Environmental Science & Technology, 2012, 46(20): 11119-11127.
[24] KUMAR A, SARIN M M. Aerosol iron solubility in a semi-arid region: temporal trend and impact of anthropogenic sources [J]. Tellus B:Chemical and Physical Meteorology, 2010, 62B: 125-132.
[25] AGUILAR-ISLAS A M, WU J F, REMBER R, et al. Dissolution of aerosol-derived iron in seawater: Leach solution chemistry, aerosol type, and colloidal iron fraction [J]. Marine Chemistry, 2010, 120(1/4): 25-33.
[26] HAN Q, ZENDER C S, MOORE J K, et al. Global estimates of mineral dust aerosol iron and aluminum solubility that account for particle size using diffusion-controlled and surface-area-controlled approximations [J]. Global Biogeochemical Cycles, 2012, 26: 2038.
[27] GUO L, CHEN Y, WANG F J, et al. Effects of Asian dust on the atmospheric input of trace elements to the East China Sea [J]. Marine Chemistry, 2014, 163: 19-34. doi: 10.1016/j.marchem.2014.04.003
[28] OOKI A, NISHIOKA J, ONO T, et al. Size dependence of iron solubility of Asian mineral dust particles [J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D3): 320-339.
[29] MAJESTIC B J, SCHAUER J J, SHAFER M M. Application of synchrotron radiation for measurement of iron red-ox speciation in atmospherically processed aerosols [J]. Atmospheric Chemistry and Physics, 2007(10): 2475-2487.
[30] SEGURET M J M, KOCAK M, THEODOSI C, et al. Iron solubility in crustal and anthropogenic aerosols: The Eastern Mediterranean as a case study [J]. Marine Chemistry, 2011, 126(1/4): 229-238.