[1] GARCÍA-CARMONA M, ROMERO-FREIRE A, SIERRA ARAGÓN M, et al. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic [J]. Journal of Environmental Management, 2017, 191: 228-236.
[2] FENG L, YAN H, DAI C, et al. The systematic exploration of cadmium-accumulation characteristics of maize kernel in acidic soil with different pollution levels in China [J]. Science of The Total Environment, 2020, 729: 138972. doi: 10.1016/j.scitotenv.2020.138972
[3] WANG Y, WANG R, FAN L, et al. Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China [J]. Chemosphere, 2017, 174: 613-627. doi: 10.1016/j.chemosphere.2017.01.055
[4] DEHGHANIFIROOZABADI M, NOFERESTI P, AMIRABADIZADEH A, et al. Blood lead levels and multiple sclerosis: A case-control study [J]. Multiple Sclerosis and Related Disorders, 2019, 27: 151-155. doi: 10.1016/j.msard.2018.10.010
[5] GONG Y, QU Y, YANG S, et al. Status of arsenic accumulation in agricultural soils across China (1985–2016) [J]. Environmental Research, 2020, 186: 109525. doi: 10.1016/j.envres.2020.109525
[6] KUMARI S, AMIT, JAMWAL R, et al. Recent developments in environmental mercury bioremediation and its toxicity: A review [J]. Environmental Nanotechnology, Monitoring & Management, 2020, 13: 100283.
[7] HUANG Y, CHEN Q, DENG M, et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China [J]. Journal of Environmental Management, 2018, 207: 159-168.
[8] 张亭亭, 李江山, 王平, 等. 磷酸镁水泥固化铅污染土的应力—应变特性研究 [J]. 岩土力学, 2016, 37(S1): 215-225. ZHANG T T, LI J S, WANG P, et al. Study on stress-strain characteristics of lead-contaminated soil cured by magnesium phosphate cement [J]. Rock and Soil Mechanics, 2016, 37(S1): 215-225(in Chinese).
[9] WANG Y S, DAI J G, WANG L, et al. Influence of lead on stabilization/solidification by ordinary portland cement and magnesium phosphate cement [J]. Chemosphere, 2018, 190: 90-96. doi: 10.1016/j.chemosphere.2017.09.114
[10] 张亭亭, 李江山, 王平, 等. 磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制 [J]. 岩土力学, 2016, 37(S2): 279-286. ZHANG T T, LI J S, WANG P, et al. Experimental study and micro-mechanism of mechanical properties of lead-contaminated soil cured by magnesium phosphate cement [J]. Rock and Soil Mechanics, 2016, 37(S2): 279-286(in Chinese).
[11] 张亭亭, 王平, 李江山, 等. 养护龄期和铅含量对磷酸镁水泥固化/稳定化铅污染土的固稳性能影响规律及微观机制 [J]. 岩土力学, 2018, 39(6): 2115-2123. ZHANG T T, WANG P, LI J S, et al. The effect of curing age and lead content on the stability of magnesium phosphate cement solidified/stabilized lead-contaminated soil and its micro-mechanism [J]. Rock and Soil Mechanics, 2018, 39(6): 2115-2123(in Chinese).
[12] 李晔, 方嘉淇. 磷酸镁水泥对挥发型重金属Pb2+、Cd2+的固化效果及机理的研究 [J]. 硅酸盐通报, 2019, 38(3): 901-904,917. LI Y, FANG J Q. Study on the curing effect and mechanism of magnesium phosphate cement on volatile heavy metals Pb2+ and Cd2+ [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 901-904,917(in Chinese).
[13] SU Y, YANG J, LIU D, et al. Effects of municipal solid waste incineration fly ash on solidification/stabilization of Cd and Pb by magnesium potassium phosphate cement [J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 259-265. doi: 10.1016/j.jece.2015.11.025
[14] CAO X, WANG W, MA R, et al. Solidification/stabilization of Pb2+ and Zn2+ in the sludge incineration residue-based magnesium potassium phosphate cement: Physical and chemical mechanisms and competition between coexisting ions [J]. Environmental Pollution, 2019, 253: 171-180. doi: 10.1016/j.envpol.2019.07.017
[15] HE X, LAI Z, YAN T, et al. Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2+ [J]. Construction and Building Materials, 2019, 225: 234-242. doi: 10.1016/j.conbuildmat.2019.07.184
[16] HE Y, LAI Z, YAN T, et al. Effect of Cd2+ on early hydration process of magnesium phosphate cement and its leaching toxicity properties [J]. Construction and Building Materials, 2019, 209: 32-40. doi: 10.1016/j.conbuildmat.2019.03.075
[17] LAI Z, LAI X, SHI J, et al. Effect of Zn2+ on the early hydration behavior of potassium phosphate based magnesium phosphate cement [J]. Construction and Building Materials, 2016, 129: 70-78. doi: 10.1016/j.conbuildmat.2016.11.002
[18] TAO Y, ZHENYU L, ZHICHAO H, et al. Mechanical and microstructure of magnesium potassium phosphate cement with a high concentration of Ni(II) and its leaching toxicity [J]. Construction and Building Materials, 2020, 245: 118425. doi: 10.1016/j.conbuildmat.2020.118425
[19] BUJ I, TORRAS J, CASELLAS D, et al. Effect of heavy metals and water content on the strength of magnesium phosphate cements [J]. Journal of Hazardous Materials, 2009, 170(1): 345-350. doi: 10.1016/j.jhazmat.2009.04.091
[20] KIM H T, LEE T G. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd) [J]. Chemosphere, 2017, 178: 479-485. doi: 10.1016/j.chemosphere.2017.03.092
[21] LIU Z, QIAN G, ZHOU J, et al. Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics [J]. Journal of Hazardous Materials, 2008, 157(1): 146-153. doi: 10.1016/j.jhazmat.2007.12.110
[22] ZHENYU L, HONGTAO W, YANG H, et al. Rapid solidification of highly loaded high‐level liquid wastes with magnesium phosphate cement [J]. Ceramics International, 2019, 45(4): 5050-5057. doi: 10.1016/j.ceramint.2018.11.206
[23] LE ROUZIC M, CHAUSSADENT T, PLATRET G, et al. Mechanisms of k-struvite formation in magnesium phosphate cements [J]. Cement and Concrete Research, 2017, 91: 117-122. doi: 10.1016/j.cemconres.2016.11.008
[24] CÔTÉ P L, BRIDLE T R. Long-term leaching scenarios for cement-based waste forms [J]. Waste Management & Research, 1987, 5(1): 55-66.
[25] DU Y J, WEI M L, REDDY K R, et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization [J]. Journal of Environmental Management, 2014, 146: 179-188. doi: 10.1016/j.jenvman.2014.07.035
[26] SHU J, WU H, LIU R, et al. Simultaneous stabilization/solidification of Mn2+ and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource [J]. Ecotoxicology and Environmental Safety, 2018, 148: 220-227. doi: 10.1016/j.ecoenv.2017.10.027
[27] FANG Y, CHEN B, ODERJI S Y. Experimental research on magnesium phosphate cement mortar reinforced by glass fiber [J]. Construction and Building Materials, 2018, 188: 729-736. doi: 10.1016/j.conbuildmat.2018.08.153
[28] YOU C, QIAN J, QIN J, et al. Effect of early hydration temperature on hydration product and strength development of magnesium phosphate cement (MPC) [J]. Cement and Concrete Research, 2015, 78: 179-189. doi: 10.1016/j.cemconres.2015.07.005
[29] 石军兵, 赖振宇, 卢忠远, 等. 铅离子对复合磷酸盐磷酸镁水泥水化硬化特性的影响 [J]. 功能材料, 2015, 46(2): 2060-2065. doi: 10.3969/j.issn.1001-9731.2015.02.013 SHI J B, LAI Z Y, LU Z Y, et al. Effect of lead ion on the hydration and hardening characteristics of composite phosphate magnesium phosphate cement [J]. Functional Materials, 2015, 46(2): 2060-2065(in Chinese). doi: 10.3969/j.issn.1001-9731.2015.02.013
[30] 王哲, 丁耀堃, 许四法, 等. 酸雨环境下磷酸镁水泥固化锌污染土溶出特性研究 [J]. 岩土工程学报, 2017, 39(4): 697-704. doi: 10.11779/CJGE201704015 WANG Z, DING Y K, XU S F, et al. Study on the dissolution characteristics of magnesium phosphate cement solidified zinc contaminated soil under acid rain environment [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 697-704(in Chinese). doi: 10.11779/CJGE201704015
[31] BYKOV G L, ERSHOV V A, ERSHOV B G. Radiolysis of the magnesium phosphate cement on γ-irradiation [J]. Construction and Building Materials, 2020, 252: 119156. doi: 10.1016/j.conbuildmat.2020.119156
[32] 傅明娇, 杨海林, 吴传明, 等. 温度对含模拟α-高放核废液的磷酸镁水泥固化体性能的影响 [J]. 材料导报, 2017, 31(24): 86-90. doi: 10.11896/j.issn.1005-023X.2017.024.017 FU M J, YANG H L, WU C M, et al. The effect of temperature on the properties of solidified magnesium phosphate cement containing simulated α-high-level nuclear waste liquid [J]. Materials Review, 2017, 31(24): 86-90(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.024.017
[33] 侯世伟, 张瑀哲, 李宏男, 等. 冻融循环下磷酸镁水泥固化铜污染土的淋滤特性研究 [J]. 科学技术与工程, 2020, 20(5): 1993-1999. doi: 10.3969/j.issn.1671-1815.2020.05.043 HOU S W, ZHANG Y Z, LI H N, et al. Leaching characteristics of copper-contaminated soil solidified by magnesium phosphate cement under freeze-thaw cycles [J]. Science Technology and Engineering, 2020, 20(5): 1993-1999(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.05.043
[34] LIU L, LI W, SONG W, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability [J]. Science of The Total Environment, 2018, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161
[35] SHU J, LIU R, LIU Z, et al. Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO [J]. Journal of Hazardous Materials, 2016, 317: 267-274. doi: 10.1016/j.jhazmat.2016.05.076
[36] CHO J H, EOM Y, LEE T G. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes [J]. Journal of Hazardous Materials, 2014, 278: 474-482. doi: 10.1016/j.jhazmat.2014.06.026
[37] BUJ I, TORRAS J, ROVIRA M, et al. Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals [J]. Journal of Hazardous Materials, 2010, 175(1): 789-794.
[38] SANDERSON P, NAIDU R, BOLAN N, et al. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation [J]. Journal of Hazardous Materials, 2015, 299: 395-403. doi: 10.1016/j.jhazmat.2015.06.056
[39] FENG Y S, DU Y J, REDDY K R, et al. Performance of two novel binders to stabilize field soil with zinc and chloride: Mechanical properties, leachability and mechanisms assessment [J]. Construction and Building Materials, 2018, 189: 1191-1199. doi: 10.1016/j.conbuildmat.2018.09.072
[40] WANG L, CHEN L, GUO B, et al. Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil [J]. Journal of Hazardous Materials, 2020, 400: 123317. doi: 10.1016/j.jhazmat.2020.123317
[41] JI M, SU X, ZHAO Y, et al. Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: Optimization, selectivity, and mechanism [J]. Applied Surface Science, 2015, 344: 128-136. doi: 10.1016/j.apsusc.2015.03.006
[42] NGUYEN T C, LOGANATHAN P, NGUYEN T V, et al. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies [J]. Chemical Engineering Journal, 2015, 270: 393-404. doi: 10.1016/j.cej.2015.02.047
[43] DIMA J B, SEQUEIROS C, ZARITZKY N E. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes [J]. Chemosphere, 2015, 141: 100-111. doi: 10.1016/j.chemosphere.2015.06.030
[44] MOGHIMI F, JAFARI A H, YOOZBASHIZADEH H, et al. Adsorption behavior of Sb(Ⅲ) in single and binary Sb(Ⅲ)—Fe(Ⅱ) systems on cationic ion exchange resin: Adsorption equilibrium, kinetic and thermodynamic aspects [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 236-248. doi: 10.1016/S1003-6326(19)65195-2
[45] ANGKAWIJAYA A E, SANTOSO S P, BUNDJAJA V, et al. Studies on the performance of bentonite and its composite as phosphate adsorbent and phosphate supplementation for plant [J]. Journal of Hazardous Materials, 2020, 399: 123130. doi: 10.1016/j.jhazmat.2020.123130
[46] GORSKI C A, FANTLE M S. Stable mineral recrystallization in low temperature aqueous systems: A critical review [J]. Geochimica et Cosmochimica Acta, 2017, 198: 439-465. doi: 10.1016/j.gca.2016.11.013
[47] WANG H, WANG X, MA J, et al. Removal of cadmium (Ⅱ) from aqueous solution: A comparative study of raw attapulgite clay and a reusable waste–struvite/attapulgite obtained from nutrient-rich wastewater [J]. Journal of Hazardous Materials, 2017, 329: 66-76. doi: 10.1016/j.jhazmat.2017.01.025
[48] CAO X, MA L Q, RHUE D R, et al. Mechanisms of lead, copper, and zinc retention by phosphate rock [J]. Environmental Pollution, 2004, 131(3): 435-444. doi: 10.1016/j.envpol.2004.03.003
[49] SOUDÉE E, PÉRA J. Mechanism of setting reaction in magnesia-phosphate cements [J]. Cement and Concrete Research, 2000, 30(2): 315-321. doi: 10.1016/S0008-8846(99)00254-9
[50] WANG A J, ZHANG J, LI J M, et al. Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics [J]. Materials Science and Engineering, 2013, 33(5): 2508-2512. doi: 10.1016/j.msec.2013.02.014
[51] DU Y J, WEI M L, REDDY K R, et al. Effect of carbonation on leachability, strength and microstructural characteristics of KMP binder stabilized Zn and Pb contaminated soils [J]. Chemosphere, 2016, 144: 1033-1042. doi: 10.1016/j.chemosphere.2015.09.082
[52] HAQUE M A. Assessment of nickel leaching phenomena from landfill waste mixed paving block for eco-friendly field application [J]. Journal of Cleaner Production, 2016, 139: 99-112. doi: 10.1016/j.jclepro.2016.08.028
[53] RANDALL P, CHATTOPADHYAY S. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes [J]. Journal of Hazardous Materials, 2004, 114(1): 211-223.
[54] WAGH A S, SAYENKO S Y, SHKUROPATENKO V A, et al. Experimental study on cesium immobilization in struvite structures [J]. Journal of Hazardous Materials, 2016, 302: 241-249. doi: 10.1016/j.jhazmat.2015.09.049
[55] VINOKUROV S E, KULYAKO Y M, SLYUNTCHEV O M, et al. Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices [J]. Journal of Nuclear Materials, 2009, 385(1): 189-192. doi: 10.1016/j.jnucmat.2008.09.053
[56] SINGH D, MANDALIKA V R, PARULEKAR S J, et al. Magnesium potassium phosphate ceramic for 99Tc immobilization [J]. Journal of Nuclear Materials, 2006, 348(3): 272-282. doi: 10.1016/j.jnucmat.2005.09.026