[1] XU H J, LI Y Z, GAO L J, et al. Planned heating control strategy and thermodynamic modeling of a natural gas thermal desorption system for contaminated soil[J]. Energies, 2020, 13(3): 642. doi: 10.3390/en13030642
[2] 李书鹏, 焦文涛, 李鸿炫, 等. 热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108
[3] LACHANCE J, COM J T, BAKER R S, et al. Application of 'thermal conductive heating/in-situ thermal desorption (ISTD)'to the remediation of chlorinated volatile organic compounds in saturated and unsaturated settings[C]//Proceedings of Battelle’s Conference on Remediation of Chlorinated and Recalcitrant Compounds, Columbus, 2004: 1-8.
[4] HERON G, PARKER K, GALLIGAN J, et al. Thermal treatment of eight CVOC source zones to near nondetect concentrations[J]. Ground Water Monitoring and Remediation, 2009, 29(3): 56-65. doi: 10.1111/j.1745-6592.2009.01247.x
[5] BAKER R S, HERON G, LACHANCE J. 2-D physical models of thermal conduction heating for remediation of DNAPL source zones in aquitards[C]//Consoil 2008. 2008: 1-10.
[6] XIE Q, MUMFORD K G, KUEPER B H. Modelling gas-phase recovery of volatile organic compounds during in situ thermal treatment[J]. Journal of Contaminant Hydrology, 2020, 234: 103698. doi: 10.1016/j.jconhyd.2020.103698
[7] YU Y, LIU L, YANG C, et al. Removal kinetics of petroleum hydrocarbons from low-permeable soil by sand mixing and thermal enhancement of soil vapor extraction[J]. Chemosphere, 2019, 236: 124319. doi: 10.1016/j.chemosphere.2019.07.050
[8] DAVIS R J, LILJESTRAND H M, KATZ L E. Evidence for multiple removal pathways in low-temperature (200-400℃) thermal treatment of pentachlorophenol-laden soils[J]. Journal of Hazardous Materials, 2020, 400: 122870. doi: 10.1016/j.jhazmat.2020.122870
[9] STEGEMEIER G L, VINEGAR H J. Thermal Conduction Heating Conduction Heating for In-Situ Thermal Desorption of Soils[M]. Florida: CRC Press, 2001:1-37.
[10] DING D, SONG X, WEI C, et al. A review on the sustainability of thermal treatment for contaminated soils[J]. Environmental Pollution, 2019, 253: 449-463. doi: 10.1016/j.envpol.2019.06.118
[11] 洪顺军, 杜卫, 刘永红, 等. 地源热泵地埋管换热器传热特性影响因素分析[J]. 制冷与空调, 2016, 30(4): 441-445.
[12] 杜红普, 李敏, 王恩宇. 高温下饱和回填材料的换热特性研究[J]. 太阳能学报, 2017, 38(1): 172-179.
[13] XU J, WANG F, SUN C, et al. Gas thermal remediation of an organic contaminated site: field trial[J]. Environmental Science and Pollytion Research, 2019, 26(6): 6038-6047. doi: 10.1007/s11356-018-4027-2
[14] JIN H, GUO Y, DENG H, et al. A simulation model for coupled heat transfer and moisture transport under the action of heat source in unsaturated soils[J]. Scientific Reports, 2018, 8(1): 7750. doi: 10.1038/s41598-018-26108-x
[15] JIAO Q W, ZHANG Y T. Modeling and simulation of heat and moisture transfer of the geothermal borehole[J]. //26th Chinese Control and Decision Conference (2014 CCDC), 2014: 3347-3351.
[16] AHMAD S, RIZVI Z, ARSALAN K M, et al. Experimental study of thermal performance of the backfill material around underground power cable under steady and cyclic thermal loading[J]. Materials Today:Proceedings, 2019, 17: 85-95. doi: 10.1016/j.matpr.2019.06.404
[17] 贺永智, 徐旭, 吕玲, 等. 覆土层含水率对直埋式电缆散热特性的影响研究[J]. 中国计量大学学报, 2019, 30(4): 427-433.
[18] LI Z, WANG W W. Main existing problems and respective countermeasures of ground-source heat pump technique applications[J]. Applied Mechanics and Materials, 2013, 433-435: 2327-2330. doi: 10.4028/www.scientific.net/AMM.433-435.2327
[19] 王恩琦, 黄体士, 张方方, 等. 回填材料对地源热泵系统换热效率的影响分析[J]. 制冷与空调, 2019, 33(3): 240-244.
[20] LIU L, CAI G, LIU X, et al. Evaluation of thermal-mechanical properties of quartz sand-bentonite-carbon fiber mixtures as the borehole backfilling material in ground source heat pump[J]. Energy and Buildings, 2019, 202: 109407.
[21] 刘湘云, 陈颖, 赖康平, 等. 地源热泵埋地换热器回填土的实验研究[J]. 流体机械, 2007(8): 60-62. doi: 10.3969/j.issn.1005-0329.2007.08.016
[22] 雷彦鹏. 地源热泵工程固废基回填材料的研发与应用研究[D]. 济南: 山东大学, 2020.
[23] MCWATTERS R S, ROWE R K, WILKINS D, et al. Modelling of vapour intrusion into a building impacted by a fuel spill in Antarctica[J]. Journal of Environmental Management, 2019, 231: 467-482. doi: 10.1016/j.jenvman.2018.07.092
[24] 赵小丽. 土壤源热泵竖直埋管换热特性管内外耦合的三维动态编程数值研究[D]. 西安: 长安大学, 2016.
[25] 吴晅, 梁思源, 郑明杰, 等. 套管式地埋管换热器传热特性数值模拟[J]. 重庆理工大学学报(自然科学), 2020, 34(12): 226-236.