[1] 刘凡, 谭文峰, 刘桂秋, 等. 几种土壤中铁锰结核的重金属离子吸附与锰矿物类型 [J]. 土壤学报, 2002, 39(5): 699-706. doi: 10.3321/j.issn:0564-3929.2002.05.012 LIU F, TAN W F, LIU G Q, et al. Adsorption of heavy metal ions on Fe-Mn nodules in several soils and types of Mn oxide minerals [J]. Acta Pedologica Sinica, 2002, 39(5): 699-706(in Chinese). doi: 10.3321/j.issn:0564-3929.2002.05.012
[2] HALL G E M, VAIVE J E, BEER R, et al. Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction [J]. Journal of Geochemical Exploration, 1996, 56(1): 59-78. doi: 10.1016/0375-6742(95)00050-X
[3] HERON G, CROUZET C, BOURG A C M, et al. Speciation of Fe(Ⅱ) and Fe(Ⅲ) in contaminated aquifer sediments using chemical extraction techniques [J]. Environmental Science & Technology, 1994, 28(9): 1698-1705.
[4] VOELZ J, JOHNSON N W, CHUN C L, et al. Quantitative dissolution of environmentally accessible iron residing in iron-rich minerals: A review [J]. ACS Earth and Space Chemistry, 2019, 3(8): 1371-1392. doi: 10.1021/acsearthspacechem.9b00012
[5] SUDA A M, MAKINO T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review [J]. Geoderma, 2016, 270: 68-75. doi: 10.1016/j.geoderma.2015.12.017
[6] PEARSON G F, GREENWAY G M. Recent developments in manganese speciation [J]. TrAC Trends in Analytical Chemistry, 2005, 24(9): 803-809. doi: 10.1016/j.trac.2005.02.008
[7] 顾明华, 李志明, 陈宏, 等. 施锰对土壤锰氧化物形成及镉固定的影响 [J]. 生态环境学报, 2020, 29(2): 360-368. GU M H, LI Z M, CHEN H, et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil [J]. Ecology and Environmental Sciences, 2020, 29(2): 360-368(in Chinese).
[8] 徐水萍, 梁美娜, 张庆, 等. 铁锰氧化物及其复合材料的研究进展 [J]. 环境科学与技术, 2019, 42(10): 197-206. XU S P, LIANG M N, ZHANG Q, et al. Review of research progress on iron-manganese oxides and its composites [J]. Environmental Science & Technology, 2019, 42(10): 197-206(in Chinese).
[9] MICHALKE B, HALBACH S, NISCHWITZ V. Speciation and toxicological relevance of manganese in humans [J]. Journal of Environmental Monitoring, 2007, 9(7): 650-656. doi: 10.1039/b704173j
[10] GRYGO-SZYMANKO E, TOBIASZ A, WALAS S. Speciation analysis and fractionation of manganese: A review [J]. TrAC Trends in Analytical Chemistry, 2016, 80: 112-124. doi: 10.1016/j.trac.2015.09.010
[11] POST J E. Manganese oxide minerals: Crystal structures and economic and environmental significance [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3447-3454. doi: 10.1073/pnas.96.7.3447
[12] 刘凡, 冯雄汉, 陈秀华, 等. 氧化锰矿物的生物成因及其性质的研究进展 [J]. 地学前缘, 2008, 15(6): 66-73. doi: 10.3321/j.issn:1005-2321.2008.06.009 LIU F, FENG X H, CHEN X H, et al. Advances in the study of biological genesis of manganese oxide minerals and their characteristics [J]. Earth Science Frontiers, 2008, 15(6): 66-73(in Chinese). doi: 10.3321/j.issn:1005-2321.2008.06.009
[13] 孟佑婷, 郑袁明, 张丽梅, 等. 环境中生物氧化锰的形成机制及其与重金属离子的相互作用 [J]. 环境科学, 2009, 30(2): 574-582. doi: 10.3321/j.issn:0250-3301.2009.02.044 MENG Y T, ZHENG Y M, ZHANG L M, et al. Formation and reactions of biogenic manganese oxides with heavy metals in environment [J]. Environmental Science, 2009, 30(2): 574-582(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.02.044
[14] TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic Manganese Oxides: Properties and mechanisms of formation [J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 287-328. doi: 10.1146/annurev.earth.32.101802.120213
[15] LEEPER G W. The forms and reactions of manganese in the soil [J]. Soil Science, 1947, 63(2): 79-94. doi: 10.1097/00010694-194702000-00001
[16] MULDER E G, GERRETSEN F C. Soil manganese in relation to plant growth [J]. Advances in Agronomy, 1952, 4: 221-277.
[17] CHRISTENSEN P D, TOTH S J, BEAR F E. The status of soil manganese as influenced by moisture, organic matter, and pH [J]. Soil Science Society of America Journal, 1951, 15(C): 279-282. doi: 10.2136/sssaj1951.036159950015000C0064x
[18] DION H G, MANN P J G. Three-valent manganese in soils [J]. The Journal of Agricultural Science, 1946, 36(4): 239-245. doi: 10.1017/S0021859600023960
[19] CHAO T T. Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride [J]. Soil Science Society of America Journal, 1972, 36(5): 764-768. doi: 10.2136/sssaj1972.03615995003600050024x
[20] WEERARATNA C S. Absorption of manganese by rice under flooded and unflooded conditions [J]. Plant and Soil, 1969, 30(1): 121-125. doi: 10.1007/BF01885270
[21] JARVIS S C. The forms of occurrence of manganese in some acidic soils [J]. Journal of Soil Science, 1984, 35(3): 421-429. doi: 10.1111/j.1365-2389.1984.tb00298.x
[22] BRUINS J H, PETRUSEVSKI B, SLOKAR Y M, et al. Manganese removal from groundwater: Characterization of filter media coating [J]. Desalination and Water Treatment, 2015, 55(7): 1851-1863. doi: 10.1080/19443994.2014.927802
[23] STUMM W. Aquatic chemistry: Chemical equilibria and rates in natural waters[M]. New York: John Wiley & Sons, 1996.
[24] MCKENZIE R M. The reaction of cobalt with manganese dioxide minerals [J]. Soil Research, 1970, 8(1): 97. doi: 10.1071/SR9700097
[25] 谭文峰, 刘凡, 李永华, 等. 我国几种土壤铁锰结核中的锰矿物类型 [J]. 土壤学报, 2000, 37(2): 192-201. doi: 10.3321/j.issn:0564-3929.2000.02.006 TAN W F, LIU F, LI Y H, et al. Mineralogy of manganese in iron-manganese nodules of several soils in China [J]. Acta Pedologica Sinica, 2000, 37(2): 192-201(in Chinese). doi: 10.3321/j.issn:0564-3929.2000.02.006
[26] 刘凡, 谭文峰, 王贻俊. 土壤中氧化锰矿物的类型及其与土壤环境条件的关系 [J]. 土壤通报, 2002, 33(3): 175-180. doi: 10.3321/j.issn:0564-3945.2002.03.005 LIU F, TAN W F, WANG Y J. Types of Mn oxide minerals in SSoils relationship between their types and soil environment conditions [J]. Chinese Journal of Soil Science, 2002, 33(3): 175-180(in Chinese). doi: 10.3321/j.issn:0564-3945.2002.03.005
[27] BAUR W H. Rutile-type compounds. Ⅴ. Refinement of MnO2 and MgF2 [J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1976, 32(7): 2200-2204. doi: 10.1107/S0567740876007371
[28] POSR J E, VEBLEN D R. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method [J]. American Mineralogist, 1990, 75(5-6): 477-489.
[29] MANCEAU A, TOMMASEO C, RIHS S, et al. Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption, and diffraction [J]. Geochimica et Cosmochimica Acta, 2005, 69(16): 4007-4034. doi: 10.1016/j.gca.2005.03.018
[30] VODYANITSKII Y N. Mineralogy and geochemistry of manganese: A review of publications [J]. Eurasian Soil Science, 2009, 42(10): 1170-1178. doi: 10.1134/S1064229309100123
[31] BYSTRÖM A M, LUND E W, LUND L K, et al. The crystal structure of ramsdellite, an orthorhombic modification of MnO2 [J]. Acta Chemica Scandinavica, 1949, 3: 163-173. doi: 10.3891/acta.chem.scand.03-0163
[32] ZWICKER W K, JAFFE H W, MEIJER W O J. Nsutite-A widespread manganese oxide mineral [J]. American Mineralogist, 1962, 47(3-4): 246-266.
[33] POST J E, von DREELE R B, BUSECK P R. Symmetry and cation displacements in hollandites: Structure refinements of hollandite, cryptomelane and priderite [J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1982, 38(4): 1056-1065. doi: 10.1107/S0567740882004968
[34] GUTZMER J. Asbestiform manjiroite and todorokite from the Kalahari manganese field, South Africa [J]. South African Journal of Geology, 2000, 103(3/4): 163-174.
[35] TURNER S, POST J E. Refinement of the substructure and superstructure of romanechite [J]. American Mineralogist, 1988, 73(9-10): 1155-1161.
[36] SZYMAŃSKI W, SKIBA M, BŁACHOWSKI A. Mineralogy of Fe-Mn nodules in albeluvisols in the Carpathian foothills, Poland [J]. Geoderma, 2014, 217/218: 102-110. doi: 10.1016/j.geoderma.2013.11.008
[37] POST J E, BISH D L. Rietveld refinement of the todorokite structure [J]. American Mineralogist, 1988, 73(7-8): 861-869.
[38] POST J E, APPLEMAN D E. Crystal-structure refinement of lithiophorite [J]. American Mineralogist, 1994, 79(3-4): 370-374.
[39] POST J E, APPLEMAN D E. Chalcophanite, ZnMn3O7·3H2O-New crystal-structure determinations [J]. American Mineralogist, 1988, 73(11-12): 1401-1404.
[40] LEE S, XU H F, XU W Q, et al. The structure and crystal chemistry of vernadite in ferromanganese crusts[J]. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2019, 75(Pt 4): 591-598.
[41] GLASSER L S D, INGRAM L. Refinement of the crystal structure of groutite – MnOOH [J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1968, 24(9): 1233-1236. doi: 10.1107/S0567740868004036
[42] BRICKER O. Some stability relations in system MnO2-H2O at 25 degrees and 1 atmosphere total pressure [J]. American Mineralogist, 1965, 50(9): 1296.
[43] SATOMI K. Oxygen positional parameters of tetragonal Mn3O4 [J]. Journal of the Physical Society of Japan, 1961, 16(2): 258-266. doi: 10.1143/JPSJ.16.258
[44] GELLER S. Structure of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering [J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1971, 27(4): 821-828. doi: 10.1107/S0567740871002966
[45] SASAKI S, FUJINO K, TAKÉUCHI Y, et al. On the estimation of atomic charges by the X-ray method for some oxides and silicates [J]. Acta Crystallographica Section A, 1980, 36(6): 904-915. doi: 10.1107/S0567739480001908
[46] POST J E, BISH D L. Rietveld refinement of the coronadite structure [J]. American Mineralogist, 1989, 74(7-8): 913-917.
[47] DELLA PUPPA L, KOMÁREK M, BORDAS F, et al. Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide [J]. Journal of Colloid and Interface Science, 2013, 399: 99-106. doi: 10.1016/j.jcis.2013.02.029
[48] MAYANNA S, PEACOCK C L, SCHÄFFNER F, et al. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH [J]. Chemical Geology, 2015, 402: 6-17. doi: 10.1016/j.chemgeo.2015.02.029
[49] TONKIN J W, BALISTRIERI L S, MURRAY J W. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model [J]. Applied Geochemistry, 2004, 19(1): 29-53. doi: 10.1016/S0883-2927(03)00115-X
[50] ZHAO W, FENG X H, TAN W F, et al. Relation of lead adsorption on birnessites with different average oxidation states of manganese and release of Mn2+/H+/K+ [J]. Journal of Environmental Sciences, 2009, 21(4): 520-526. doi: 10.1016/S1001-0742(08)62302-5
[51] HEM J D. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions [J]. Chemical Geology, 1978, 21(3/4): 199-218.
[52] MCKENZIE R M. The adsorption of lead and other heavy metals on oxides of manganese and iron [J]. Soil Research, 1980, 18(1): 61. doi: 10.1071/SR9800061
[53] MATHUR S S, DZOMBAK D A. Surface complexation modeling: Goethite [J]. Interface Science and Technology, 2006, 11: 443-468.
[54] GADDE R R, LAITINEN H A. Studies of heavy-metal sorption by Hydrous oxides [J]. Abstracts of Papers of the American Chemical Society, 1974: 142.
[55] FENG X H, ZHAI L M, TAN W F, et al. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals [J]. Environmental Pollution, 2007, 147(2): 366-373. doi: 10.1016/j.envpol.2006.05.028
[56] 王砚, 谭文峰, 冯雄汉, 等. 水钠锰矿对几种重金属离子的吸附及其与锰氧化度和吸附位点的关系 [J]. 环境科学, 2011, 32(10): 3128-3136. WANG Y, TAN W F, FENG X H, et al. Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites [J]. Environmental Science, 2011, 32(10): 3128-3136(in Chinese).
[57] LI Y, ZHAO X P, WU J T, et al. Surface complexation modeling of divalent metal cation adsorption on birnessite [J]. Chemical Geology, 2020, 551: 119774. doi: 10.1016/j.chemgeo.2020.119774
[58] van GENUCHTEN C M, PEÑA J. Sorption selectivity of birnessite particle edges: A d-PDF analysis of Cd(Ⅱ) and Pb(Ⅱ) sorption by δ-MnO2 and ferrihydrite [J]. Environmental Science:Processes & Impacts, 2016, 18(8): 1030-1041.
[59] PEACOCK C L, SHERMAN D M. Sorption of Ni by birnessite: Equilibrium controls on Ni in seawater [J]. Chemical Geology, 2007, 238(1/2): 94-106.
[60] ZHU J, HUANG Q Y, PIGNA M, et al. Competitive sorption of Cu and Cr on goethite and goethite-bacteria complex [J]. Chemical Engineering Journal, 2012, 179: 26-32. doi: 10.1016/j.cej.2011.07.011
[61] DU H H, HUANG Q Y, PEACOCK C L, et al. Competitive binding of Cd, Ni and Cu on goethite organo-mineral composites made with soil bacteria [J]. Environmental Pollution, 2018, 243: 444-452. doi: 10.1016/j.envpol.2018.08.087
[62] GUO Z Q, XU D P, ZHAO D L, et al. Influence of pH, ionic strength, foreign ions and FA on adsorption of radiocobalt on goethite [J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287(2): 505-512. doi: 10.1007/s10967-010-0706-2
[63] JUANG R S, CHUNG J Y. Equilibrium sorption of heavy metals and phosphate from single- and binary-sorbate solutions on goethite [J]. Journal of Colloid and Interface Science, 2004, 275(1): 53-60. doi: 10.1016/j.jcis.2004.01.035
[64] 李媛, 魏东斌, 杜宇国. 锰氧化物对有机污染物的转化机制研究进展 [J]. 环境化学, 2013, 32(7): 1288-1299. doi: 10.7524/j.issn.0254-6108.2013.07.024 LI Y, WEI D B, DU Y G. A review on the transformation mechanisms of typical organic pollutants by manganese oxide [J]. Environmental Chemistry, 2013, 32(7): 1288-1299(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.024
[65] LUO Y, DING J Y, SHEN Y G, et al. Interaction mechanism and kinetics of ferrous sulfide and manganese oxides in aqueous system [J]. Journal of Soils and Sediments, 2018, 18(2): 564-575. doi: 10.1007/s11368-017-1774-5
[66] LIU Y, ZHANG F, HOU J T, et al. Peroxymonosulfate improves the activity and stability of manganese oxide for oxidation of arsenite to arsenate [J]. CLEAN – Soil, Air, Water, 2020, 48(2): 1900195. doi: 10.1002/clen.201900195
[67] FU L, SHOZUGAWA K, MATSUO M. Oxidation of antimony (Ⅲ) in soil by manganese (Ⅳ) oxide using X-ray absorption fine structure [J]. Journal of Environmental Sciences, 2018, 73: 31-37. doi: 10.1016/j.jes.2018.01.003
[68] WANG Y H, BENKADDOUR S, MARAFATTO F F, et al. Diffusion- and pH-dependent reactivity of layer-type MnO2: Reactions at particle edges versus vacancy sites [J]. Environmental Science & Technology, 2018, 52(6): 3476-3485.
[69] NEGRA C, ROSS D S, LANZIROTTI A. Oxidizing behavior of soil manganese: Interactions among abundance, oxidation state, and pH [J]. Soil Science Society of America Journal, 2005, 69(1): 87-95. doi: 10.2136/sssaj2005.0087a
[70] NESBITT H W, CANNING G W, BANCROFT G M. XPS study of reductive dissolution of 7Å-birnessite by H3AsO3, with constraints on reaction mechanism [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2097-2110. doi: 10.1016/S0016-7037(98)00146-X
[71] MANNING B A, FENDORF S E, BOSTICK B, et al. Arsenic(Ⅲ) oxidation and arsenic(Ⅴ) adsorption reactions on synthetic birnessite [J]. Environmental Science & Technology, 2002, 36(5): 976-981.
[72] LAFFERTY B J, GINDER-VOGEL M, ZHU M Q, et al. Arsenite oxidation by a poorly crystalline manganese-oxide. 2. results from X-ray absorption spectroscopy and X-ray diffraction [J]. Environmental Science & Technology, 2010, 44(22): 8467-8472.
[73] BANERJEE D, NESBITT H W. Oxidation of aqueous Cr(Ⅲ) at birnessite surfaces: Constraints on reaction mechanism [J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1671-1687.
[74] NICO P S, ZASOSKI R J. Importance of Mn(Ⅲ) availability on the rate of Cr(Ⅲ) oxidation on δ-MnO2 [J]. Environmental Science & Technology, 2000, 34(16): 3363-3367.
[75] FENDORF S E, FENDORF M, SPARKS D L, et al. Inhibitory mechanisms of Cr(Ⅲ) oxidation by δ-MnO2 [J]. Journal of Colloid and Interface Science, 1992, 153(1): 37-54. doi: 10.1016/0021-9797(92)90296-X
[76] LANDROT G, GINDER-VOGEL M, LIVI K, et al. Chromium(Ⅲ) oxidation by three poorly crystalline manganese(Ⅳ) oxides. 2. Solid phase analyses [J]. Environmental Science & Technology, 2012, 46(21): 11601-11609.
[77] PAN C, LIU H, CATALANO J G, et al. Understanding the roles of dissolution and diffusion in Cr(OH)3 oxidation by δ-MnO2 [J]. ACS Earth and Space Chemistry, 2019, 3(3): 357-365. doi: 10.1021/acsearthspacechem.8b00129
[78] LIU W Z, LI J, ZHENG J Y, et al. Different pathways for Cr(Ⅲ) oxidation: Implications for Cr(Ⅵ) reoccurrence in reduced chromite ore processing residue [J]. Environmental Science & Technology, 2020, 54(19): 11971-11979.
[79] SUN Q, LIU C, ALVES M E, et al. The oxidation and sorption mechanism of Sb on δ-MnO2 [J]. Chemical Engineering Journal, 2018, 342: 429-437. doi: 10.1016/j.cej.2018.02.091
[80] SUN Q, CUI P X, LIU C, et al. Antimony oxidation and sorption behavior on birnessites with different properties (δ-MnO2 and triclinic birnessite) [J]. Environmental Pollution, 2019, 246: 990-998. doi: 10.1016/j.envpol.2018.12.027
[81] HEINTZE S G. Readily soluble manganese of soils and Marsh Spot of peas [J]. The Journal of Agricultural Science, 1938, 28(2): 175-186. doi: 10.1017/S0021859600050590
[82] HEINTZE S G. Manganese deficiency in peas and other crops in relation to the availability of soil manganese [J]. The Journal of Agricultural Science, 1946, 36(4): 227-238. doi: 10.1017/S0021859600023959
[83] JONES L H P, LEEPER G W. Available manganese oxides in neutral and alkaline soils [J]. Plant and Soil, 1951, 3(2): 154-159. doi: 10.1007/BF01676371
[84] HEINTZE S G, MANN P J G. Divalent manganese in soil extracts [J]. Nature, 1946, 158(4022): 791-792. doi: 10.1038/158791a0
[85] DAGNALL R M, KIRKBRIGHT G F, WEST T S, et al. Multichannel atomic fluorescence and flame photometric determination of calcium, copper, magnesium, manganese, potassium, and zinc in soil extracts [J]. Analytical Chemistry, 1971, 43(13): 1765-1769. doi: 10.1021/ac60307a036
[86] NAGESWARA RAO D V K. Evaluation of soil extractants in terms of growth [J]. Communications in Soil Science and Plant Analysis, 2005, 36(11/12): 1513-1523.
[87] NADIRSHAW M, CORNFIELD A H. Direct determination of manganese in soil extracts by atomic-absorption spectroscopy [J]. Analyst, 1968, 93(1108): 475. doi: 10.1039/an9689300475
[88] HEINTZE S G, MANN P J G. A study of various fractions of the manganese of neutral and alkaline organic soils [J]. Journal of Soil Science, 1951, 2(2): 234-242. doi: 10.1111/j.1365-2389.1951.tb00604.x
[89] COWLEY J M, WALKLEY A. Reaction between manganous ion and manganese dioxide [J]. Nature, 1948, 161(4083): 173. doi: 10.1038/161173a0
[90] KOSTKA J E, LUTHER G W Ⅲ, NEALSON K H. Chemical and biological reduction of Mn (Ⅲ)-pyrophosphate complexes: Potential importance of dissolved Mn (Ⅲ) as an environmental oxidant [J]. Geochimica et Cosmochimica Acta, 1995, 59(5): 885-894.
[91] HEINTZE S G, MANN P J G. Soluble complexes of manganic manganese [J]. The Journal of Agricultural Science, 1947, 37(1): 23-26. doi: 10.1017/S0021859600013009
[92] TU Q, SHAN X Q, NI Z M. Evaluation of a sequential extraction procedure for the fractionation of amorphous iron and manganese oxides and organic matter in soils [J]. Science of the Total Environment, 1994, 151(2): 159-165. doi: 10.1016/0048-9697(94)90172-4
[93] CHESTER R, HUGHES M J. A chemical technique for the separation of Ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments [J]. Chemical Geology, 1967, 2: 249-262. doi: 10.1016/0009-2541(67)90025-3
[94] SHUMAN L M. Separating soil iron- and manganese-oxide fractions for microelement analysis [J]. Soil Science Society of America Journal, 1982, 46(5): 1099-1102. doi: 10.2136/sssaj1982.03615995004600050044x
[95] DENYS A, JANOTS E, AUZENDE A L, et al. Evaluation of selectivity of sequential extraction procedure applied to REE speciation in laterite [J]. Chemical Geology, 2021, 559: 119954. doi: 10.1016/j.chemgeo.2020.119954
[96] YAN N, ZHONG H, BRUSSEAU M L. The natural activation ability of subsurface media to promote in situ chemical oxidation of 1, 4-dioxane [J]. Water Research, 2019, 149: 386-393. doi: 10.1016/j.watres.2018.11.028
[97] SPINKS S C, UVAROVA Y, THORNE R, et al. Detection of zinc deposits using terrestrial ferromanganese crusts [J]. Ore Geology Reviews, 2017, 80: 484-503. doi: 10.1016/j.oregeorev.2016.07.015
[98] YU M, TEEL A L, WATTS R J. Activation of peroxymonosulfate by subsurface minerals [J]. Journal of Contaminant Hydrology, 2016, 191: 33-43. doi: 10.1016/j.jconhyd.2016.05.001
[99] SUDA A M, MAKINO T, HIGASHI T. Applicability of selective dissolution of manganese oxide by acidified 0.1 M NH2OH-HCl in Japanese soils [J]. Geoderma, 2011, 163(3/4): 291-295.
[100] SUDA A M, MAKINO T, HIGASHI T. Extractability of manganese and iron oxides in typical Japanese soils by 0.5 mol L−1 hydroxylamine hydrochloride (pH 1.5) [J]. Soil Science and Plant Nutrition, 2012, 58(6): 684-695. doi: 10.1080/00380768.2012.742002
[101] SUDA A M, MAKINO T, HIGASHI T. An improved selective extraction method for Mn oxides and occluded metals with emphasis on applicability to Andisols [J]. Soil Science and Plant Nutrition, 2013, 59(6): 840-851. doi: 10.1080/00380768.2013.857580
[102] SUDA A M, MAKINO T, HIGASHI T. Improvement of the NH2OH-HCl-HOAc method for extracting manganese and iron oxides in Japanese Andisols and other soil types in Japan [J]. Soil Science and Plant Nutrition, 2013, 59(5): 700-714. doi: 10.1080/00380768.2013.834242
[103] URE A M, BERROW M L. Analysis of edta extracts of soils for copper, zinc and manganese by atomic absorption spectrophotometry with a mechanically separated flame [J]. Analytica Chimica Acta, 1970, 52(2): 247-257. doi: 10.1016/S0003-2670(01)80955-7
[104] KIM Y J, MOON J W, ROH Y, et al. Mineralogical characterization of saprolite at the FRC background site in Oak Ridge, Tennessee [J]. Environmental Geology, 2009, 58(6): 1301-1307. doi: 10.1007/s00254-008-1633-1
[105] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
[106] SHUMAN L M. Fractionation method for soil microelements [J]. Soil Science, 1985, 140(1): 11-22. doi: 10.1097/00010694-198507000-00003
[107] MCDANIEL P A, BUOL S W. Manganese distributions in acid soils of the north Carolina piedmont [J]. Soil Science Society of America Journal, 1991, 55(1): 152-158. doi: 10.2136/sssaj1991.03615995005500010027x
[108] SHUMAN L M. Sodium hypochlorite methods for extracting microelements associated with soil organic matter [J]. Soil Science Society of America Journal, 1983, 47(4): 656-660. doi: 10.2136/sssaj1983.03615995004700040010x
[109] GU X Y, EVANS L J. Modelling the adsorption of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) onto fithian illite [J]. Journal of Colloid and Interface Science, 2007, 307(2): 317-325. doi: 10.1016/j.jcis.2006.11.022
[110] DIJKSTRA J J, MEEUSSEN J C L, COMANS R N J. Evaluation of a generic multisurface sorption model for inorganic soil contaminants [J]. Environmental Science & Technology, 2009, 43(16): 6196-6201.
[111] WARDEN B T, REISENAUER H M. Fractionation of soil manganese forms important to plant availability [J]. Soil Science Society of America Journal, 1991, 55(2): 345. doi: 10.2136/sssaj1991.03615995005500020007x
[112] CHAO T T, ANDERSON B J. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado [J]. Chemical Geology, 1974, 14(3): 159-166. doi: 10.1016/0009-2541(74)90125-9
[113] CHAO T T, THEOBALD P K. The significance of secondary iron and manganese oxides in geochemical exploration [J]. Economic Geology, 1976, 71(8): 1560-1569. doi: 10.2113/gsecongeo.71.8.1560
[114] TOKASHIKI Y, DIXON J B, GOLDEN D C. Manganese oxide analysis in soils by combined X-ray diffraction and selective dissolution methods [J]. Soil Science Society of America Journal, 1986, 50(4): 1079-1084. doi: 10.2136/sssaj1986.03615995005000040049x
[115] BIBAK A. Copper retention by Danish Spodosols in relation to contents of organic matter and aluminum, iron, and manganese oxides [J]. Communications in Soil Science and Plant Analysis, 1997, 28(11/12): 939-948.
[116] DONG D M, LI Y, ZHANG B Y, et al. Selective chemical extraction and separation of Mn, Fe oxides and organic material in natural surface coatings: Application to the study of trace metal adsorption mechanism in aquatic environments [J]. Microchemical Journal, 2001, 69(1): 89-94. doi: 10.1016/S0026-265X(01)00068-6
[117] CHON C M, KIM J G, LEE G H, et al. Influence of extractable soil manganese on oxidation capacity of different soils in Korea [J]. Environmental Geology, 2008, 55(4): 763-773. doi: 10.1007/s00254-007-1029-7
[118] HETTIARACHCHI G M, PIERZYNSKI G M, RANSOM M D. In situ stabilization of soil lead using phosphorus and manganese oxide [J]. Environmental Science & Technology, 2000, 34(21): 4614-4619.