[1] 张文泉, 侯俊, 尚婷婷. 页岩气开采的环境问题及建议 [J]. 广东化工, 2017, 44(2): 52-53. doi: 10.3969/j.issn.1007-1865.2017.02.026 ZHANG W Q, HOU J, SHANG T T. Environmental problems and suggestions for shale gas mining [J]. Guangdong Chemical Industry, 2017, 44(2): 52-53(in Chinese). doi: 10.3969/j.issn.1007-1865.2017.02.026
[2] KARGBO D M, WILHELM R G, CAMPBELL D J. Natural gas plays in the marcellus shale: Challenges and potential opportunities [J]. Environmental Science & Technology, 2010, 44(15): 5679-5684.
[3] CARRERO-PARREÑO A, ONISHI V C, SALCEDO-DÍAZ R, et al. Optimal pretreatment system of flowback water from shale gas production [J]. Industrial & Engineering Chemistry Research, 2017, 56(15): 4386-4398.
[4] WANG H, LU L, CHEN X, et al. Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States [J]. Water Research, 2019, 164: 114942. doi: 10.1016/j.watres.2019.114942
[5] 孟宣宇. 页岩气开发压裂返排液水质特征及其处理技术研究[D]. 北京: 中国石油大学(北京), 2017. MENG X Y. Study on water quality characteristics and treatment technology of fracturing fluid flowback in shale gas development[D]. Beijing: China University of Petroleum, Beijing, 2017(in Chinese).
[6] 黄靓, 李慧强, 杨平. 页岩气压裂返排液的组成及处理技术[J]. 环境科学与技术, 2016, 39(增刊2): 166-171. HUANG L, LI H Q, YANG P. The components and treatment of shale gas fracturing flowback water[J]. Environmental Science & Technology, 2016, 39(Sup 2): 166-171(in Chinese).
[7] BUTKOVSKYI A, BRUNING H, KOOLS S A E, et al. Organic pollutants in shale gas flowback and produced waters: Identification, potential ecological impact, and implications for treatment strategies [J]. Environmental Science & Technology, 2017, 51(9): 4740-4754.
[8] 宋磊, 张晓飞, 王毅琳, 等. 美国页岩气压裂返排液处理技术进展及前景展望 [J]. 环境工程学报, 2014, 8(11): 4721-4725. SONG L, ZHANG X F, WANG Y L, et al. Frac-back water treatment development and perspective in United States [J]. Chinese Journal of Environmental Engineering, 2014, 8(11): 4721-4725(in Chinese).
[9] WANG B, XIONG M, WANG P, et al. Chemical characterization in hydraulic fracturing flowback and produced water (HF-FPW) of shale gas in Sichuan of China [J]. Environ Sci Pollut Res Int, 2020, 27(21): 26532-26542. doi: 10.1007/s11356-020-08670-y
[10] YOST E E, STANEK J, DEWOSKIN R S, et al. Overview of chronic oral toxicity values for chemicals present in hydraulic fracturing fluids, flowback, and produced waters [J]. Environmental Science & Technology, 2016, 50(9): 4788-4797.
[11] SCHULZE S, ZAHN D, MONTES R, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples [J]. Water Research, 2019, 153: 80-90. doi: 10.1016/j.watres.2019.01.008
[12] 邱哲. 页岩气开采返排水污染特性与AGS-SBR处理实验研究[D]. 重庆: 重庆大学, 2018. QIU Z. Researches on pollution characteristics and AGS-SBR treatment of flowback water from shale gas extraction[D]. Chongqing: Chongqing University, 2018(in Chinese).
[13] SHI W R, WANG X Z, GUO M Y, et al. Water use for shale gas development in China's Fuling shale gas field [J]. Journal of Cleaner Production, 2020, 256: 120680. doi: 10.1016/j.jclepro.2020.120680
[14] SOVACOOL B K. Cornucopia or curse?Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking) [J]. Renewable and Sustainable Energy Reviews, 2014, 37: 249-264. doi: 10.1016/j.rser.2014.04.068
[15] WANG Q, CHEN X, JHA A N, et al. Natural gas from shale formation - The evolution, evidences and challenges of shale gas revolution in United States [J]. Renewable and Sustainable Energy Reviews, 2014, 30: 1-28. doi: 10.1016/j.rser.2013.08.065
[16] BLYTHE K, JEFFRIES R, TRAVERS M. An international perspective of challenges and constraints in shale gas extraction[M]//Environmental and Health Issues in Unconventional Oil and Gas Development. Amsterdam: Elsevier, 2016: 225-248.
[17] 秦浩, 陈星, 许钦. 页岩气开发过程中的水资源水环境风险分析 [J]. 水利经济, 2019, 37(3): 62-66,87. doi: 10.3880/j.issn.1003-9511.2019.03.011 QIN H, CHEN X, XU Q. Risk analysis and evaluation of water resources and water environment inexploitation process of shale gas [J]. Journal of Economics of Water Resources, 2019, 37(3): 62-66,87(in Chinese). doi: 10.3880/j.issn.1003-9511.2019.03.011
[18] YU M J, WEINTHAL E, PATIÑO-ECHEVERRI D, et al. Water availability for shale gas development in Sichuan basin, China [J]. Environmental Science & Technology, 2016, 50(6): 2837-2845.
[19] SMALL M J, STERN P C, BOMBERG E, et al. Risks and risk governance in unconventional shale gas development [J]. Environmental Science & Technology, 2014, 48(15): 8289-8297.
[20] BRANTLEY S L, YOXTHEIMER D, ARJMAND S, et al. Water resource impacts during unconventional shale gas development: The Pennsylvania experience [J]. International Journal of Coal Geology, 2014, 126: 140-156. doi: 10.1016/j.coal.2013.12.017
[21] DARRAH T H, VENGOSH A, JACKSON R B, et al. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales [J]. PNAS, 2014, 111(39): 14076-14081. doi: 10.1073/pnas.1322107111
[22] WARNER N R, CHRISTIE C A, JACKSON R B, et al. Impacts of shale gas wastewater disposal on water quality in western Pennsylvania [J]. Environmental Science & Technology, 2013, 47(20): 11849-11857.
[23] 王丹, 何敏. 页岩气勘探开发对水环境的影响及建议 [J]. 环境科学导刊, 2016, 35(6): 103-107. doi: 10.3969/j.issn.1673-9655.2016.06.024 WANG D, HE M. Impacts and suggestions of shale gas exploration and development on water [J]. Environmental Science Survey, 2016, 35(6): 103-107(in Chinese). doi: 10.3969/j.issn.1673-9655.2016.06.024
[24] FERRER I, THURMAN E M. Chemical constituents and analytical approaches for hydraulic fracturing waters [J]. Trends in Environmental Analytical Chemistry, 2015, 5: 18-25. doi: 10.1016/j.teac.2015.01.003
[25] 吴青芸, 郑猛, 胡云霞. 页岩气开采的水污染问题及其综合治理技术 [J]. 科技导报, 2014, 32(13): 74-83. doi: 10.3981/j.issn.1000-7857.2014.13.013 WU Q Y, ZHENG M, HU Y X. Shale gas produced water contamination and its comprehensive treatment [J]. Science & Technology Review, 2014, 32(13): 74-83(in Chinese). doi: 10.3981/j.issn.1000-7857.2014.13.013
[26] LUEK J L, GONSIOR M. Organic compounds in hydraulic fracturing fluids and wastewaters: A review [J]. Water Research, 2017, 123: 536-548. doi: 10.1016/j.watres.2017.07.012
[27] HE Y H, FLYNN S L, FOLKERTS E J, et al. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water [J]. Water Research, 2017, 114: 78-87. doi: 10.1016/j.watres.2017.02.027
[28] PIOTROWSKI P, WEGGLER B A, YOXTHEIMER D A, et al. Elucidating environmental fingerprinting mechanisms of unconventional gas development through hydrocarbon analysis [J]. Analytical Chemistry, 2018, 90(8): 5466-5473. doi: 10.1021/acs.analchem.8b00822
[29] HOELZER K, SUMNER A J, KARATUM O, et al. Indications of transformation products from hydraulic fracturing additives in shale-gas wastewater [J]. Environmental Science & Technology, 2016, 50(15): 8036-8048.
[30] STRONG L C, GOULD T, KASINKAS L, et al. Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering [J]. Journal of Environmental Engineering, 2014, 140(5): B4013001. doi: 10.1061/(asce)ee.1943-7870.0000792
[31] ABUALFARAJ N, GURIAN P L, OLSON M S. Characterization of Marcellus shale flowback water [J]. Environmental Engineering Science, 2014, 31(9): 514-524. doi: 10.1089/ees.2014.0001
[32] ZIEMKIEWICZ P F, THOMAS H Y. Evolution of water chemistry during Marcellus Shale gas development: A case study in West Virginia [J]. Chemosphere, 2015, 134: 224-231. doi: 10.1016/j.chemosphere.2015.04.040
[33] LESTER Y, FERRER I, THURMAN E M, et al. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment [J]. Science of the Total Environment, 2015, 512/513: 637-644. doi: 10.1016/j.scitotenv.2015.01.043
[34] OETJEN K, THOMAS L. Volatile and semi-volatile organic compound patterns in flowback waters from fracturing sites within the Marcellus Shale [J]. Environmental Earth Sciences, 2016, 75(12): 1-10.
[35] HE Y H, SUN C X, ZHANG Y F, et al. Developmental toxicity of the organic fraction from hydraulic fracturing flowback and produced waters to early life stages of zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2018, 52(6): 3820-3830.
[36] MAGUIRE-BOYLE S J, BARRON A R. Organic compounds in produced waters from shale gas wells [J]. Environmental Science. Processes & Impacts, 2014, 16(10): 2237-2248.
[37] LUEK J L, SCHMITT-KOPPLIN P, MOUSER P J, et al. Halogenated organic compounds identified in hydraulic fracturing wastewaters using ultrahigh resolution mass spectrometry [J]. Environmental Science & Technology, 2017, 51(10): 5377-5385.
[38] ZHONG C, LI J Y, FLYNN S L, et al. Temporal changes in microbial community composition and geochemistry in flowback and produced water from the duvernay formation [J]. ACS Earth and Space Chemistry, 2019, 3(6): 1047-1057. doi: 10.1021/acsearthspacechem.9b00037
[39] OETJEN K, CHAN K E, GULMARK K, et al. Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse [J]. Science of the Total Environment, 2018, 619/620: 654-664. doi: 10.1016/j.scitotenv.2017.11.078
[40] THURMAN E M, FERRER I, BLOTEVOGEL J, et al. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: Identification of ethoxylated surfactants [J]. Analytical Chemistry, 2014, 86(19): 9653-9661. doi: 10.1021/ac502163k
[41] OREM W, TATU C L, VARONKA M, et al. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale [J]. International Journal of Coal Geology, 2014, 126: 20-31. doi: 10.1016/j.coal.2014.01.003
[42] THACKER J, CARLTON D J, HILDENBRAND Z, et al. Chemical analysis of wastewater from unconventional drilling operations [J]. Water, 2015, 7(12): 1568-1579. doi: 10.3390/w7041568
[43] FERRER I, THURMAN E M. Analysis of hydraulic fracturing additives by LC/Q-TOF-MS [J]. Analytical and Bioanalytical Chemistry, 2015, 407(21): 6417-6428. doi: 10.1007/s00216-015-8780-5
[44] WOLFORD R. Characterization of organics in marcellus shale flowback and produced waters [D]. Pennsylvania: Pennsylvania State University, 2011.
[45] STRINGFELLOW W T, DOMEN J K, CAMARILLO M K, et al. Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing [J]. Journal of Hazardous Materials, 2014, 275: 37-54. doi: 10.1016/j.jhazmat.2014.04.040
[46] CLUFF M A, HARTSOCK A, MACRAE J D, et al. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells [J]. Environmental Science & Technology, 2014, 48(11): 6508-6517.
[47] MOHAN A M, BIBBY K J, LIPUS D, et al. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing [J]. PLoS One, 2014, 9(10): e107682. doi: 10.1371/journal.pone.0107682
[48] MURALI MOHAN A, HARTSOCK A, BIBBY K J, et al. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction [J]. Environmental Science & Technology, 2013, 47(22): 13141-13150.
[49] SUMNER A, PLATA D L. Halogenation chemistry of hydraulic fracturing additives under highly saline simulated subsurface conditions [J]. Environmental Science & Technology, 2018, 52(16): 9097-9107.
[50] EVANS M, SUMNER A J, DALY R A, et al. Hydraulically fractured natural-gas well microbial communities contain genomic halogenation and dehalogenation potential [J]. Environmental Science & Technology Letters, 2019, 6(10): 585-591.
[51] VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States [J]. Environmental Science & Technology, 2014, 48(15): 8334-8348.
[52] KIM S, OMUR-OZBEK P, CARLSON K. Characterization of organic matter in water from oil and gas wells hydraulically fractured with recycled water [J]. Journal of Hazardous Materials, 2020, 397: 120551. doi: 10.1016/j.jhazmat.2019.04.034
[53] SHIH J S, SAIERS J E, ANISFELD S C, et al. Characterization and analysis of liquid waste from Marcellus shale gas development [J]. Environmental Science & Technology, 2015, 49(16): 9557-9565.
[54] SUN Y, WU M H, TONG T Z, et al. Organic compounds in Weiyuan shale gas produced water: Identification, detection and rejection by ultrafiltration-reverse osmosis processes [J]. Chemical Engineering Journal, 2021,412: 128699.
[55] SY/T 6596-2004, 气田水回注方法[S].
[56] Regnery J, Coday B D, Riley S M, et al. Solid-phase extraction followed by gas chromatography-mass spectrometry for the quantitative analysis of semi-volatile hydrocarbons in hydraulic fracturing wastewaters [J]. Analytical Methods, 2016, 8(9): 68.
[57] BEAN J, BHANDARI S, BILOTTO A, et al. Formation of particulate matter from the oxidation of evaporated hydraulic fracturing wastewater [J]. Environmental Science & Technology, 2018, 52(8): 4960-4968.
[58] SANTOS I, HILDENBRAND Z L, SCHUG K A. A review of analytical methods for characterizing the potential environmental impacts of unconventional oil and gas development [J]. Analytical Chemistry, 2019, 91(1): 689-703. doi: 10.1021/acs.analchem.8b04750
[59] AYANDA O S, OLUTONA G O, OLUMAYEDE E G, et al. Phenols, flame retardants and phthalates in water and wastewater – a global problem [J]. Water Science and Technology, 2016, 74(5): 1025-1038. doi: 10.2166/wst.2016.314
[60] ELSNER M, HOELZER K. Quantitative survey and structural classification of hydraulic fracturing chemicals reported in unconventional gas production [J]. Environmental Science & Technology, 2016, 50(7): 3290-3314.
[61] KAHRILAS G A, BLOTEVOGEL J, STEWART P S, et al. Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity [J]. Environmental Science & Technology, 2015, 49(1): 16-32.
[62] U. S. Environmental Protection Agency. Toxic and priority pollutants under the clean water act[EB/OL]. [2021-5-28].https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act .
[63] BLEWETT T A, DELOMPRÉ P L M, HE Y H, et al. Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea Daphnia magna [J]. Environmental Science & Technology, 2017, 51(5): 3032-3039.
[64] HULL N M, ROSENBLUM J S, ROBERTSON C E, et al. Succession of toxicity and microbiota in hydraulic fracturing flowback and produced water in the Denver-Julesburg Basin [J]. Science of the Total Environment, 2018, 644: 183-192. doi: 10.1016/j.scitotenv.2018.06.067
[65] 黄靓, 李慧强, 杨平. 页岩气压裂返排液的组成及处理技术 [J]. 环境科学与技术, 2016, 39(S2): 166-171. HUANG L, LI H Q, YANG P. The Components and Treatment of Shale Gas Fracturing Flowback Water [J]. Environmental Science & Technology, 2016, 39(S2): 166-171(in Chinese).
[66] TANG P, LI J L, LI T, et al. Efficient integrated module of gravity driven membrane filtration, solar aeration and GAC adsorption for pretreatment of shale gas wastewater. [J]. Journal of hazardous materials, 2021: 405.
[67] CHANG H Q, LIU S, TONG T Z, et al. On-Site Treatment of Shale Gas Flowback and Produced Water in Sichuan Basin by Fertilizer Drawn Forward Osmosis for Irrigation [J]. Environmental science & technology, 2020, 54(17).
[68] 向夕品. 三氯乙烯和四氯乙烯处理方法研究进展 [J]. 渝州大学学报(自然科学版), 2002, 19(4): 77-82. XIANG X P. Research progress in treatment methods of trichloroethylene and perchloroethylene [J]. Journal of Yuzhou University (Natural Sciences Edition), 2002, 19(4): 77-82(in Chinese).
[69] CRAMPON M, HELLAL J, MOUVET C, et al. Degradation of tetrachloroethylene by zero valent iron nanoparticles in the presence of a natural groundwater bacterial biofilm in a sandy porous media [J]. Heliyon, 2021, 7(1): e05854. doi: 10.1016/j.heliyon.2020.e05854
[70] REN Q D, XIE X N, TANG Y, et al. Methyl tertiary-butyl ether inhibits THP-1 macrophage cholesterol efflux in vitro and accelerates atherosclerosis in ApoE-deficient mice in vivo [J]. Journal of Environmental Sciences, 2021, 101: 236-247. doi: 10.1016/j.jes.2020.08.011
[71] SQUILLACE P J, PANKOW J F, KORTE N E, et al. Review of the environmental behavior and fate of methyl tert-butyl ether [J]. Environmental Toxicology and Chemistry, 1997, 16(9): 1836-1844. doi: 10.1002/etc.5620160911