[1] ABD EL-RAHMAN M K, RIAD S M, GAWAD S A A, et al. Stability indicating spectrophotometric and spectrodensitometric methods for the determination of diatrizoate sodium in presence of its degradation product [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2015, 136: 1167-1174. doi: 10.1016/j.saa.2014.10.002
[2] NOWAK A, PACEK G, MROZIK A. Transformation and ecotoxicological effects of iodinated X-ray contrast media [J]. Reviews in Environmental Science and Bio-Technology, 2020, 19(2): 337-354. doi: 10.1007/s11157-020-09534-0
[3] HIRSCH R, TERNES T A, LINDART A, et al. A sensitive method for the determination of iodine containing diagnostic agents in aqueous matrices using LC-electrospray-tandem-MS detection [J]. Fresenius Journal of Analytical Chemistry, 2000, 366(8): 835-841. doi: 10.1007/s002160051581
[4] PEREZ S, BARCELO D. Fate and occurrence of X-ray contrast media in the environment [J]. Analytical and Bioanalytical Chemistry, 2007, 387: 1235-1246. doi: 10.1007/s00216-006-0953-9
[5] SORDET M, BULETE A, VULLIET E. A rapid and easy method based on hydrophilic interaction chromatography coupled with tandem mass spectrometry (HILIC-MS/MS/MS) to quantify iodinated X-ray contrast in wastewaters [J]. Talanta, 2018, 190: 480-486. doi: 10.1016/j.talanta.2018.08.006
[6] DREWES J E, FOX P, JEKEL M. Occurrence of iodinated X-ray contrast media in domestic effluents and their fate during indirect potable reuse [J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2001, 36(9): 1633-1645.
[7] 陈皇博, 程心滢, 叶晓枫, 等. 碘代X射线造影剂的分析方法及其污染现状研究进展 [J]. 环境化学, 2019, 38(8): 1919-1929. doi: 10.7524/j.issn.0254-6108.2018101001 CHEN H B, CHENG X Y, YE X F, et al. Research progress on analysis methods and pollution status of iodine-based X-ray contrast agents [J]. Environmental Chemistry, 2019, 38(8): 1919-1929(in Chinese). doi: 10.7524/j.issn.0254-6108.2018101001
[8] BALAN G G, PAVEL L, SFARTI C V, et al. Exposure to iopamidol after endoscopic retrograde cholangiopancreatography assessing pancreatic toxicity [J]. Revista De Chimie, 2016, 67(5): 987-990.
[9] WENDEL F M, TERNES T A, RICHARDSON S D, et al. Comparative toxicity of high-molecular weight iopamidol disinfection byproducts [J]. Environmental Science & Technology Letters, 2016, 3(3): 81-84.
[10] YANGIN-GOMEC C, OLMEZ-HANCI T, ARSLAN-ALATON I. et al. Iopamidol degradation with ZVI- and ZVA-activated chemical oxidation: Investigation of toxicity, anaerobic inhibition and microbial communities [J]. Journal of Environmental Chemical Engineering, 2018, 6(6): 7318-7326. doi: 10.1016/j.jece.2018.09.028
[11] DUIRK S E, LINDELL C, CORNELISON C C, et al. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging [J]. Environmental Science & Technology, 2011, 45(16): 6845-6854.
[12] PAL A, HE Y L, JEKEL M, et al. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle [J]. Environment International, 2014, 71: 46-62. doi: 10.1016/j.envint.2014.05.025
[13] XU Z F, LI X, HU X L, et al. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment [J]. Chemosphere, 2017, 184: 253-260. doi: 10.1016/j.chemosphere.2017.05.048
[14] FABBRI D, CALZA P, DALMASSO D, et al. Iodinated X-ray contrast agents: Photoinduced transformation and monitoring in surface water [J]. Science of the Total Environment, 2016, 572: 340-351. doi: 10.1016/j.scitotenv.2016.08.003
[15] LI X, HU J J, YIN D Q, et al. Solid-phase extraction coupled with ultra high performance liquid chromatography and electrospray tandem mass spectrometry for the highly sensitive determination of five iodinated X-ray contrast media in environmental water samples [J]. Journal of Separation Science, 2015, 38(11): 1998-2005. doi: 10.1002/jssc.201401296
[16] WEGRZYN A, ZABCZYNSKI S. Monitoring of bacterial biodiversity in anaerobic membrane bioreactors (anmbrs) dealing with wastewater containing X-ray contrast media compounds [J]. Environment Protection Engineering, 2014, 40(1): 151-164.
[17] REDEKER M, WICK A, MEERMANN B, et al. Removal of the iodinated X-ray contrast medium diatrizoate by anaerobic transformation [J]. Environmental Science & Technology, 2014, 48(17): 10145-10154.
[18] TERNES T A, HIRSCH R. Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment [J]. Environmental Science & Technology, 2000, 34: 2741-2748.
[19] WATANABE Y, BACH L T, DINH P V, et al. Ubiquitous detection of artificial sweeteners and iodinated x-ray contrast media in aquatic environmental and wastewater treatment plant samples from Vietnam, the Philippines, and Myanmar [J]. Archives of Environmental Contamination and Toxicology, 2016, 70: 671-681. doi: 10.1007/s00244-015-0220-1
[20] ALLARD S, CRIQUET J, PRUNIER A, et al. Photodecomposition of iodinated contrast media and subsequent formation of toxic iodinated moieties during final disinfection with chlorinated oxidants [J]. Water Research, 2016, 103: 453-461. doi: 10.1016/j.watres.2016.07.050
[21] JEONG C H, MACHEK E J, SHAKERI M, et al. The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water [J]. Journal of Environmental Sciences, 2017, 58: 173-182. doi: 10.1016/j.jes.2017.03.032
[22] WENDEL F M, EVERSLOH C L, MACHEK E J, et al. Transformation of iopamidol during chlorination [J]. Environmental Science & Technology, 2014, 48(21): 12689-12697.
[23] MATSUSHITA T, KOBAYASHI N, HASHIZUKA M, et al. Changes in mutagenicity and acute toxicity of solutions of iodinated X-ray contrast media during chlorination [J]. Chemosphere, 2015, 135: 101-107. doi: 10.1016/j.chemosphere.2015.03.082
[24] HU C Y, HUA S J, LIN Y L, et al. Kinetics and formation of disinfection byproducts during iohexol chlor(am) ination [J]. Separation and Purification Technology, 2020, 243: 116747.
[25] PLEWA M J, SIMMONS J E, RICHARDSON S D, et al. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products[J], Environmental and Molecular Mutagenesis, 2010, 51: 871-878.
[26] RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water [J]. Environmental Science & Technology, 2008, 42: 8330-8338.
[27] MUELLNER M G, WAGNER E D, MCCALLA K, et al. Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic? [J]. Environmental Science & Technology, 2007, 41: 645-651.
[28] PLEWA M J, MUELLNER M G, RICHARDSON S D, et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts, Environmental Science & Technology, 2008, 42: 955-961.
[29] ENS W, SENNER F, GYGAX B, et al. Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water [J]. Analytical and Bioanalytical Chemistry, 2014, 406(12): 2789-2798. doi: 10.1007/s00216-014-7712-0
[30] KORMOS J L, SCHULZ M, KOHLER H P E, et al. Biotransformation of selected iodinated X-ray contrast media and characterization of microbial transformation pathways [J]. Environmental Science & Technology, 2010, 44(13): 4998-5007.
[31] ECHEVERRIA S BORRULL F FONTANALS N, et al. Determination of iodinated X-ray contrast media in sewage by solid-phase extraction and liquid chromatography tandem mass spectrometry [J]. Talanta, 2013, 116: 931-936. doi: 10.1016/j.talanta.2013.07.080
[32] KOVALOVA L, SIEGRIST H, SINGER H, et al. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination [J]. Environmental Science & Technology, 2012, 46(3): 1536-1545.
[33] NODLER K, LICHA T, BESTER K, et al. Development of a multi-residue analytical method, based on liquid chromatography-tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples [J]. Journal of Chromatography A, 2010, 1217(42): 6511-6521. doi: 10.1016/j.chroma.2010.08.048
[34] SEITZ W, WEBER W H, JIANG J Q, et al. Monitoring of iodinated X-ray contrast media in surface water [J]. Chemosphere, 2006, 64(8): 1318-1324. doi: 10.1016/j.chemosphere.2005.12.030
[35] ZONJA B, DELGADO A, PEREZ S, et al. LC-HRMS suspect screening for detection-based prioritization of iodinated contrast media photodegradates in surface waters [J]. Environmental Science & Technology, 2015, 49(6): 3464-3472.
[36] MENDOZA A, ZONJA B, MASTROIANNI N, et al. Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (central Spain): A case study to analyse their occurrence and human health risk characterization [J]. Environment International, 2016, 86: 107-118. doi: 10.1016/j.envint.2015.11.001
[37] BUSETTI F, LINGE K L, BLYTHE J W, et al. Rapid analysis of iodinated X-ray contrast media in secondary and tertiary treated wastewater by direct injection liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2008, 1213(2): 200-208. doi: 10.1016/j.chroma.2008.10.021
[38] ONG C, LEE K, CHANG Y. Biodegradation of mono azo dye-reactive orange 16 by acclimatizing biomass systems under an integrated anoxic-aerobic react sequencing batch moving bed biofilm reactor [J]. Journal of Water Process Engineering, 2020, 36: 101268. doi: 10.1016/j.jwpe.2020.101268
[39] ZHANG Q, CHEN X, ZHANG Z Y, et al. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment [J]. Bioresource Technology, 2020, 315: 123813. doi: 10.1016/j.biortech.2020.123813
[40] FALAS P, LONGREE P, LA COUR JANSEN J, et al. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process [J]. Water Research, 2013, 47(13): 4498-4506. doi: 10.1016/j.watres.2013.05.010
[41] HAPESHI E , LAMBRIANIDES A, KOUTSOFTAS P, et al. Investigating the fate of iodinated X-ray contrast media iohexol and diatrizoate during microbial degradation in an MBBR system treating urban wastewater [J]. Environmental Science and Pollution Research, 2013, 20(6): 3592-3606. doi: 10.1007/s11356-013-1605-1
[42] 阎虹, 韦朝海, 张亚平, 等. 水污染控制化学中高级氧化技术的研究及发展 [J]. 精细与专用化学品, 2008, 16(3/4): 19-22. YAN H, WEI C H, ZHANG Y P, et al. Research and development of advanced oxidation technologies in water pollution control chemistry [J]. Fine and Specialty Chemicals, 2008, 16(3/4): 19-22(in Chinese).
[43] 程丽华, 黎明, 倪福祥. 高级氧化技术在水处理中的应用 [J]. 青岛理工大学学报, 2003, 24(1): 22-25. doi: 10.3969/j.issn.1673-4602.2003.01.006 CHENG L H, LI M, NI F X. Application of advanced oxidation technology in water treatment [J]. Journal of Qingdao Technological University, 2003, 24(1): 22-25(in Chinese). doi: 10.3969/j.issn.1673-4602.2003.01.006
[44] 黄洪勋, 孙亚全, 陈明发, 等. 高级氧化技术在水处理中的应用 [J]. 黑龙江环境通报, 2012, 36(3): 60-63. doi: 10.3969/j.issn.1674-263X.2012.03.017 HUANG H X, SUN Y Q, CHEN M F, et al. Application of advanced oxidation technology in water treatment [J]. Heilongjiang Environmental Bulletin, 2012, 36(3): 60-63(in Chinese). doi: 10.3969/j.issn.1674-263X.2012.03.017
[45] 王杨杨, 席北斗, 常明, 等. 高级氧化技术在医疗废水处理中的应用 [J]. 中国新技术新产品, 2020, 3(5): 132-134. doi: 10.3969/j.issn.1673-9957.2020.05.061 WANG Y Y, XI B D, CHANG M, et al. Application of advanced oxidation technology in medical wastewater treatment [J]. New Technology & New Products of China, 2020, 3(5): 132-134(in Chinese). doi: 10.3969/j.issn.1673-9957.2020.05.061
[46] FEDOROV K, PLATA-GRYL, M KHAN J A, et al. Ultrasound-assisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water [J]. Journal of Hazardous Materials, 2020, 397: 122804. doi: 10.1016/j.jhazmat.2020.122804
[47] THARI F Z, TACHALLAIT H, EL ALAOUI N E, et al. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2, 4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media [J]. Ultrasonics Sonochemistry, 2020, 68: 105222. doi: 10.1016/j.ultsonch.2020.105222
[48] MORADI S, SOBHGOL S A, HAYATI F, et al. Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater [J]. Separation and Purification Technology, 2020, 251: 117373. doi: 10.1016/j.seppur.2020.117373
[49] VASSILEV D, PETKOVA N, KOLEVA M, et al. Ultrasound-assisted method for the synthesis of tertiary fatty aliphatic esters with potential antimicrobial activity [J]. Biointerface Research in Applied Chemistry, 2020, 10(6): 6829-6836. doi: 10.33263/BRIAC106.68296836
[50] MERONI D, JIMENEZ-SALCEDO M, FALLETTA E, et al. Sonophotocatalytic degradation of sodium diclofenac using low power ultrasound and micro sized TiO2 [J]. Ultrasonics Sonochemistry, 2020, 67: 105123. doi: 10.1016/j.ultsonch.2020.105123
[51] NING B, GRAHAM N J D, LICKISS P D, et al. A comparison of ultrasound-based advanced oxidation processes for the removal of X-ray contrast media [J]. Water Science and Technology, 2009, 60(9): 2383-2390. doi: 10.2166/wst.2009.661
[52] 龚安华, 罗亚田, 李端林. 超声波技术及其在水处理中的应用 [J]. 四川化工, 2006, 9(1): 48-50. doi: 10.3969/j.issn.1672-4887.2006.01.016 GONG A H, LUO Y T, LI D L. Ultrasonic technology and its application in water treatment [J]. Sichuan Chemical Industry, 2006, 9(1): 48-50(in Chinese). doi: 10.3969/j.issn.1672-4887.2006.01.016
[53] DOLL T E , FRIMMEL F H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials - determination of intermediates and reaction pathways [J]. Water Research, 2004, 38(4): 955-964. doi: 10.1016/j.watres.2003.11.009
[54] DOLL T E , FRIMMEL F H. Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents [J]. Water Research, 2005, 39(2/3): 403-411.
[55] SUGIHARA M N , MOELLER D, PAUL T, et al. TiO2-photocatalyzed transformation of the recalcitrant X-ray contrast agent diatrizoate [J]. Applied Catalysis B Environmental, 2013, 129: 114-122. doi: 10.1016/j.apcatb.2012.09.013
[56] PAGANINI M C, DALMASSO D, GIONCO C, et al. Beyond TiO2: Cerium‐doped zinc oxide as a new photocatalyst for the photodegradation of persistent pollutants [J]. ChemistrySelect, 2016, 1(12): 3377-3383. doi: 10.1002/slct.201600645
[57] DURAN-ALVAREZ J C, HERNANDEZ-MORALES V A, RODRIGUEZ-VARELA M, et al. Ag2O/TiO2 nanostructures for the photocatalytic mineralization of the highly recalcitrant pollutant iopromide in pure and tap water[R]. Catalysis Today, 2020, 341(S1): 71-81.
[58] HE H, WANG W, XU C M, et al. Highly efficient degradation of iohexol on a heterostructured graphene-analogue boron nitride coupled Bi2MoO6 photocatalyst under simulated sunlight [J]. Science of the Total Environment, 2020, 730: 139100. doi: 10.1016/j.scitotenv.2020.139100
[59] WU Z L, WANG Y P, XIONG Z K, et al. Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine [J]. Applied Catalysis B Environmental, 2020, 277: 119136. doi: 10.1016/j.apcatb.2020.119136
[60] ZHOU J, AN X Q, TANG Q W, et al. Dual channel construction of WO3 photocatalysts by solution plasma for the persulfate-enhanced photodegradation of bisphenol A [J]. Applied Catalysis B Environmental, 2020, 277: 119221. doi: 10.1016/j.apcatb.2020.119221
[61] CHI H Y, WAN J Q, MA Y W, et al. ZSM-5-(C@Fe) activated peroxymonosulfate for effectively degrading ciprofloxacin: In-depth analysis of degradation mode and degradation path [J]. Journal of Hazardous Materials, 2020, 398: 123024. doi: 10.1016/j.jhazmat.2020.123024
[62] HE J, YANG J L, JIANG F X, et al. Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac [J]. Chemosphere, 2020, 258: 127339. doi: 10.1016/j.chemosphere.2020.127339
[63] NOORISEPEHR M, KAKAVANDI B, ISARI A A, et al. Sulfate radical-based oxidative degradation of acetaminophen over an efficient hybrid system: Peroxydisulfate decomposed by ferroferric oxide nanocatalyst anchored on activated carbon and UV light [J]. Separation and Purification Technology, 2020, 250: 116950. doi: 10.1016/j.seppur.2020.116950
[64] XUE H H, GAO S Y, LI M, et al. Performance of ultraviolet/persulfate process in degrading artificial sweetener acesulfame [J]. Environmental Research, 2020, 188: 109804. doi: 10.1016/j.envres.2020.109804
[65] JUN B M, ELANCHEZHIYAN S S, YOON Y, et al. Accelerated photocatalytic degradation of organic pollutants over carbonate -rich lanthanum -substituted zinc spinel ferrite assembled reduced graphene oxide by ultraviolet (UV) -activated persulfate [J]. Chemical Engineering Journal, 2020, 393: 124733. doi: 10.1016/j.cej.2020.124733
[66] ZHANG Y X, LIU H L, DAI X H, et al. Impact of application of heat -activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: Soil chemical properties and antibiotic resistance [J]. Science of the Total Environment, 2020, 736: 139668. doi: 10.1016/j.scitotenv.2020.139668
[67] LI H, YANG L, HE L Y, et al. Kinetics and mechanisms of chloramphenicol degradation in aqueous solutions using heat-assisted nZVI activation of persulfate [J]. Journal of Molecular Liquids, 2020, 313: 113511. doi: 10.1016/j.molliq.2020.113511
[68] ZHANG Y X, LIU H L, DAI X H, et al. The release of organic matter, nitrogen, phosphorus and heavy metals from erythromycin fermentation residue under heat-activated persulfate oxidation conditioning [J]. Science of the Total Environment, 2020, 724: 138349. doi: 10.1016/j.scitotenv.2020.138349
[69] FAGAN W P, ZHAO J, VILLAMENA F A, et al. Synergistic, aqueous PAH degradation by ultrasonically-activated persulfate depends on bulk temperature and physicochemical parameters [J]. Ultrasonics Sonochemistry, 2020, 67: 105172. doi: 10.1016/j.ultsonch.2020.105172
[70] SHARIFI Z, ASGARI G, SEID-MOHAMMADI A, et al. Sonocatalytic degradation of p-chlorophenol by nanoscale zero-valent copper activated persulfate under ultrasonic irradiation in aqueous solutions [J]. International Journal of Engineering, 2020, 33(6): 1061-1069.
[71] LEI Y J, TIAN Y, SOBHANI Z, et al. Synergistic degradation of PFAS in water and soil by dual -frequency ultrasonic activated persulfate [J]. Chemical Engineering Journal, 2020, 388: 124215. doi: 10.1016/j.cej.2020.124215
[72] ZHANG T T, YANG Y L, LI X, Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation[J]. Separation and Purification Technology, 2020, 239: 116537.
[73] ZHANG H, YU K, HE J, et al. Droplet spray ionization mass spectrometry for real-time monitoring of activation of peroxymonosulfate by 1, 4-benzoquinone [J]. Microchemical Journal, 2018, 139: 437-442. doi: 10.1016/j.microc.2018.03.031
[74] WANG Y, LIU Y X, SHI S, et al. Removal of nitric oxide from flue gas using novel microwave -activated double oxidants system [J]. Chemical Engineering Journal, 2020, 393: 124754. doi: 10.1016/j.cej.2020.124754
[75] CHEN W S, HUANG C P. Mineralization of aniline in aqueous solution by electro-activated persulfate oxidation enhanced with ultrasound [J]. Chemical Engineering Journal, 2015, 266: 279-288. doi: 10.1016/j.cej.2014.12.100
[76] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based Advanced Oxidation Processes (AOPs) [J]. Environmental Science & Technology, 2014, 48(4): 2344-2351.
[77] OH W D, DONG Z L, LIM T T, et al. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects [J]. Applied Catalysis B-Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
[78] CAI J Z, NIU T Z, SHI P H, et al. Boron-doped diamond for hydroxyl radical and sulfate radical anion electrogeneration, transformation, and voltage-free sustainable oxidation[R]. Small, 2019, 15: 1900153.
[79] ZHOU L, FERRONATO C, CHOVELON J M, et al. Investigations of diatrizoate degradation by photo-activated persulfate [J]. Chemical Engineering Journal, 2017, 311: 28-36. doi: 10.1016/j.cej.2016.11.066
[80] CHAN T W, GRAHAM N J D, CHU W, et al. Degradation of iopromide by combined UV irradiation and peroxydisulfate [J]. Journal of Hazardous Materials, 2010, 181(1-3): 508-513. doi: 10.1016/j.jhazmat.2010.05.043
[81] MENG L J, YANG S G, SUN C, et al. A novel method for photo-oxidative degradation of diatrizoate in water via electromagnetic induction electrodeless lamp [J]. Journal of Hazardous Materials, 2017, 337: 34-46. doi: 10.1016/j.jhazmat.2017.05.005
[82] ZHU J P, LIN Y L, ZHANG T Y, et al. Modelling of iohexol degradation in a Fe(II)-activated persulfate system [J]. Chemical Engineering Journal, 2019, 367: 86-93. doi: 10.1016/j.cej.2019.02.120
[83] SHANG W T, DONG Z J, LI M, et al. Degradation of diatrizoate in water by Fe(II)-activated persulfate oxidation [J]. Chemical Engineering Journal, 2019, 361: 1333-1344. doi: 10.1016/j.cej.2018.12.139
[84] HU C Y, HOU Y Z, LIN Y L, et al. Investigation of iohexol degradation kinetics by using heat-activated persulfate [J]. Chemical Engineering Journal, 2020, 379: 122403. doi: 10.1016/j.cej.2019.122403
[85] WANG Z H, WANG X X, YUAN R X, et al. Resolving the kinetic and intrinsic constraints of heat-activated peroxydisulfate oxidation of iopromide in aqueous solution [J]. Journal of Hazardous Materials, 2020, 384: 121281. doi: 10.1016/j.jhazmat.2019.121281
[86] FARHAT A, KELLER J, TAIT S, et al. Removal of persistent organic contaminants by electrochemically activated sulfate [J]. Environmental Science & Technology, 2015, 49(24): 14326-14333.
[87] GUO X J, XU Y N, ZHA F, et al. Alpha-Fe2O3/Cu2O(SO4) composite as a novel and efficient heterogeneous catalyst for photo-Fenton removal of Orange II [J]. Applied Surface Science, 2020, 530: 147144. doi: 10.1016/j.apsusc.2020.147144
[88] JIANG J J, WANG X Y, LIU Y, et al. Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: Degradation mechanism, pathways, and products toxicity assessment [J]. Applied Catalysis B-Environmental, 2020, 278: 119349. doi: 10.1016/j.apcatb.2020.119349
[89] ZHOU Y, ZHOU L, ZHOU Y B, et al. Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions [J]. Applied Catalysis B-Environmental, 2020, 279: 119365. doi: 10.1016/j.apcatb.2020.119365
[90] HU X, DENG Y, ZHOU J T, et al. N- and O self-doped biomass porous carbon cathode in an electro-Fenton system for chloramphenicol degradation [J]. Separation and Purification Technology, 2020, 251: 117376. doi: 10.1016/j.seppur.2020.117376
[91] LIU X C, HE C S, SHEN Z Y, et al. Mechanistic study of Fe(III) chelate reduction in a neutral electro-Fenton process [J]. Applied Catalysis B-Environmental, 2020, 278: 119347. doi: 10.1016/j.apcatb.2020.119347
[92] DU X D, FU W Y, SU P, et al. Internal-micro-electrolysis-enhanced heterogeneous electro-Fenton process catalyzed by Fe/Fe3C@PC core-shell hybrid for sulfamethazine degradation [J]. Chemical Engineering Journal, 2020, 398: 125681. doi: 10.1016/j.cej.2020.125681
[93] MATYSZCZAK G, FIDLER A, POLESIAK E, et al. Application of sonochemically synthesized SnS and SnS2 in the electro-Fenton process: Kinetics and enhanced decolorization [J]. Ultrasonics Sonochemistry, 2020, 68: 105186. doi: 10.1016/j.ultsonch.2020.105186
[94] ALI N, YEOH C B, LAU S, et al. An enhanced treatment efficiency for diluted palm oil mill effluent using a photo-electro-Fenton hybrid system [J]. Journal of the Serbian Chemical Society, 2019, 84(5): 517-526. doi: 10.2298/JSC181016103A
[95] BAI X Y, LI Y, XIE L B, et al. A novel Fe-free photo-electro-Fenton-like system for enhanced ciprofloxacin degradation: bifunctional Z-scheme WO3/g-C3N4 [J]. Environmental Science-Nano, 2019, 6(9): 2850-2862. doi: 10.1039/C9EN00528E
[96] BECERRIL-ESTRADA V, ROBLES I, MARTINEZ-SANCHEZ C, et al. Study of TiO2/Ti4O(7) photo-anodes inserted in an activated carbon packed bed cathode: Towards the development of 3D-type photo-electro-Fenton reactors for water treatment [J]. Electrochimica Acta, 2020, 340: 135972. doi: 10.1016/j.electacta.2020.135972
[97] WANG W, LI Y, LI Y, et al. Electro-Fenton and photoelectro-Fenton degradation of sulfamethazine using an active gas diffusion electrode without aeration [J]. Chemosphere, 2020, 250: 126177. doi: 10.1016/j.chemosphere.2020.126177
[98] LIU C F, HUANGB C P, HU C C, et al. A dual TiO2/Ti-stainless steel anode for the degradation of orange G in a coupling photoelectrochemical and photo-electro-Fenton system [J]. Science of the Total Environment, 2019, 659: 221-229. doi: 10.1016/j.scitotenv.2018.12.224
[99] LOPEZ-SAAVEDRA N, MUNNOZ-DELGADO L F, LARA-RAMOS J A, et al. Experimental data on the degradation of caffeine by photo-electro-Fenton using BDD electrodes at pilot plant [J]. Data in Brief, 2018, 21: 1709-1715. doi: 10.1016/j.dib.2018.10.174
[100] PELLENZ L, BORBA F H, DAROIT D J, et al. Landfill leachate treatment by a boron-doped diamond-based photo-electro-Fenton system integrated with biological oxidation: A toxicity, genotoxicity and by products assessment [J]. Journal of Environmental Management, 2020, 264: 110473. doi: 10.1016/j.jenvman.2020.110473
[101] SEIBERT D, BORBA F H, BUENO F, et al. Two-stage integrated system photo-electro-Fenton and biological oxidation process assessment of sanitary landfill leachate treatment: An intermediate products study [J]. Chemical Engineering Journal, 2019, 372: 471-482. doi: 10.1016/j.cej.2019.04.162
[102] ZHAO C, ARROYO-MORA L E, DECAPRIO A P, et al. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment [J]. Water Research, 2014, 67: 144-153. doi: 10.1016/j.watres.2014.09.009
[103] GIANNAKIS S, ANDROULAKI B, COMNINELLIS C, et al. Wastewater and urine treatment by UVC-based advanced oxidation processes: Implications from the interactions of bacteria, viruses, and chemical contaminants [J]. Chemical Engineering Journal, 2018, 343: 270-282.
[104] LI W, NANABOINA V, ZHOU Q X. Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products [J]. Water Research, 2012, 46(2): 403-412. doi: 10.1016/j.watres.2011.11.002
[105] BOCOS E, OTURAN N, SANROMAN M A, et al. Elimination of radiocontrast agent diatrizoic acid from water by electrochemical advanced oxidation: Kinetics study, mechanism and mineralization pathway [J]. Journal of Electroanalytical Chemistry, 2016, 772: 1-8. doi: 10.1016/j.jelechem.2016.04.011
[106] BOCOS E, OTURAN N, PAZOS M, et al. Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process [J]. Environmental Science and Pollution Research, 2016, 23(19): 19134-19144. doi: 10.1007/s11356-016-7054-x
[107] BANASCHIK R, JABLONOWSKI H, BEDNARSKI P J, et al. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water [J]. Journal of Hazardous Materials, 2018, 342: 651-660. doi: 10.1016/j.jhazmat.2017.08.058
[108] POLO A M S, LOPEZ-PENALVER J J, SANCHEZ-POLO M, et al. Oxidation of diatrizoate in aqueous phase by advanced oxidation processes based on solar radiation [J]. Journal of Photochemistry and Photobiology A-Chemistry, 2016, 319: 87-95.
[109] 王建中, 王辉, 张萍. 电化学高级氧化技术处理难降解有机废水研究进展 [J]. 甘肃联合大学学报:自然科学版, 2005, 19(2): 49-54. WANG J Z, WANG H, ZHANG P. Research progress in the treatment of refractory organic wastewater by electrochemical advanced oxidation technology [J]. Journal of Gansu Lianhe University:Natural Science Edition, 2005, 19(2): 49-54(in Chinese).
[110] RADJENOVIC J, FLEXER V, DONOSE B C, et al. Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation [J]. Environmental Science & Technology, 2013, 47(23): 13686-13694.
[111] KORSHIN G, YAN M Q. Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review [J]. Environmental Engineering Research, 2018, 23(4): 345-353. doi: 10.4491/eer.2018.054
[112] YAN M Q, CHEN Z H, LI N, et al. Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE) [J]. Water Research, 2018, 136: 104-111. doi: 10.1016/j.watres.2018.02.045
[113] LI A, ZHAO X, HOU Y, et al. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode [J]. Applied Catalysis B:Environmental, 2012, 111-112: 628-635. doi: 10.1016/j.apcatb.2011.11.016
[114] TALUKDAR K, JUN B M, YOON Y, et al. Novel Z-scheme Ag3PO4/Fe3O4-activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of bisphenol A [J]. Journal of Hazardous Materials, 2020, 398: 123025. doi: 10.1016/j.jhazmat.2020.123025
[115] LI N, LI R, YU Y, et al. Efficient degradation of bentazone via peroxymonosulfate activation by 1D/2D gamma-MnOOH-rGO under simulated sunlight: Performance and mechanism insight [J]. Science of the Total Environment, 2020, 741: 140492. doi: 10.1016/j.scitotenv.2020.140492
[116] JIN C Y, WANG M, LI Z L, et al. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance [J]. Chemical Engineering Journal, 2020, 398: 125569. doi: 10.1016/j.cej.2020.125569
[117] WEI H R, LOEB S K, HALAS N J, et al. Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods [J]. Proceedings of The National Academy of Sciences of The United States of America, 2020, 117(27): 15473-15481. doi: 10.1073/pnas.2003362117
[118] ZHANG Y, ZHOU J B, CHEN J H, et al. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation [J]. Journal of Hazardous Materials, 2020, 392: 122315. doi: 10.1016/j.jhazmat.2020.122315
[119] CHEN P, ZHANG Q X, SHEN L Z, et al. Insights into the synergetic mechanism of a combined vis-RGO/TiO2/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products [J]. Chemosphere, 2019, 216: 341-351. doi: 10.1016/j.chemosphere.2018.10.096
[120] FENG Q Q, ZHOU J B, LUO W J, et al. Photo-Fenton removal of tetracycline hydrochloride using LaFeO3 as a persulfate activator under visible light [J]. Ecotoxicology and Environmental Safety, 2020, 198: 110661. doi: 10.1016/j.ecoenv.2020.110661
[121] TRELLU C, RIVALLIN M, CERNEAUX S, et al. Integration of sub-stoichiometric titanium oxide reactive electrochemical membrane as anode in the electro-Fenton process [J]. Chemical Engineering Journal, 2020, 400: 125936. doi: 10.1016/j.cej.2020.125936
[122] DOS SANTOS A J, CABOT P L, BRILLAS E, et al. A comprehensive study on the electrochemical advanced oxidation of antihypertensive captopril in different cells and aqueous matrices [J]. Applied Catalysis B-Environmental, 2020, 277: 119240. doi: 10.1016/j.apcatb.2020.119240
[123] 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展 [J]. 化工进展, 2020, 39(8): 3293-3306. XIAO P F, AN L, HAN S. The application progress of carbonaceous materials in activated persulfate advanced oxidation technology [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3293-3306(in Chinese).
[124] 林金华. Fenton氧化法和过硫酸盐氧化法深度处理焦化废水对比研究[D]. 太原: 太原理工大学, 2014. LIN J. Comparative study of Fenton oxidation method and persulfate oxidation method for advanced treatment of coking wastewater[D]. Taiyuan: Taiyuan University of Technology, 2014 (in Chinese).
[125] 朱应良. 基于电化学过硫酸盐技术氧化降解有机污染物的研究[D]. 广州: 华南理工大学, 2016. ZHU Y L. Research on the oxidative degradation of organic pollutants based on electrochemical persulfate technology[D]. Guangzhou: South China University of Technology, 2016 (in Chinese).
[126] 李四辉. 过硫酸钠活化法深度氧化竹材制浆废水的研究[D]. 北京: 中国林业科学研究院, 2014. LI S H. Research on deep oxidation of bamboo pulping wastewater by sodium persulfate activation method[D]. Beijing: Chinese Academy of Forestry, 2014 (in Chinese).
[127] WOOD R J, SIDNELL T, ROSS I, et al. Ultrasonic degradation of perfluorooctane sulfonic acid (PFOS) correlated with sonochemical and sonoluminescence characterisation [J]. Ultrasonics Sonochemistry, 2020, 68: 105196. doi: 10.1016/j.ultsonch.2020.105196
[128] MAO Y H, SONG A X, LI L Q, et al. A high-molecular weight exopolysaccharide from the Cs-HK1 fungus: Ultrasonic degradation, characterization and in vitro fecal fermentation [J]. Carbohydrate Polymers, 2020, 246: 116636. doi: 10.1016/j.carbpol.2020.116636
[129] LV S W, LIU J M, ZHAO N, et al. MOF-derived CoFe2O4/Fe2O3 embedded in g-C3N4 as high-efficient Z-scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate [J]. Separation and Purification Technology, 2020, 253: 117413. doi: 10.1016/j.seppur.2020.117413
[130] MAFA P J, MAMBA B B, KUVAREGA A T. Construction of hierarchical BiPW12O40/BiOI p-n heterojunction with enhanced visible light activity for degradation of endocrine disrupting Bisphenol A [J]. Separation and Purification Technology, 2020, 253: 117349. doi: 10.1016/j.seppur.2020.117349
[131] ZHAO Y, SONG M, CAO Q, et al. The superoxide radicals' production via persulfate activated with CuFe2O4@ Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil [J]. Journal of Hazardous Materials, 2020, 400: 122887. doi: 10.1016/j.jhazmat.2020.122887
[132] CHEN J Z, MENG X R, TIAN Y R, et al. Fabrication of a superhydrophilic PVDF-g-PAA@FeOOH ultrafiltration membrane with visible light photo-fenton self-cleaning performance [J]. Journal of Membrane Science, 2020, 616: 118587. doi: 10.1016/j.memsci.2020.118587
[133] SENTHILNATHAN J, YOUNIS S A, KWON E E, et al. An efficient system for electro-Fenton oxidation of pesticide by a reduced graphene oxide-aminopyrazine@3DNi foam gas diffusion electrode [J]. Journal of Hazardous Materials, 2020, 400: 123323. doi: 10.1016/j.jhazmat.2020.123323
[134] MIN S J, KIM J G, BAEK K, et al. Role of carbon fiber electrodes and carbonate electrolytes in electrochemical phenol oxidation [J]. Journal of Hazardous Materials, 2020, 400: 123083. doi: 10.1016/j.jhazmat.2020.123083
[135] LI C H, LIU S Y, SONG Y. A facile and eco-friendly method to extract apocynum venetum fibers using microwave-assisted ultrasonic degumming [J]. Industrial Crops and Products, 2020, 151: 112443. doi: 10.1016/j.indcrop.2020.112443
[136] ZHANG C J, FEI W H, WANG H Q, et al. p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water [J]. Journal of Hazardous Materials, 2020, 399: 123109. doi: 10.1016/j.jhazmat.2020.123109
[137] JIA J L, LIU D M, WANG S X, et al. Visible-light-induced activation of peroxymonosulfate by TiO2 nano-tubes arrays for enhanced degradation of bisphenol A [J]. Separation and Purification Technology, 2020, 253: 117510. doi: 10.1016/j.seppur.2020.117510
[138] SHEN Z Y, ZHOU H Y, PAN Z C, et al. Degradation of atrazine by Bi2MoO6 activated peroxymonosulfate under visible light irradiation [J]. Journal of Hazardous Materials, 2020, 400: 123187. doi: 10.1016/j.jhazmat.2020.123187