[1] HUSSAIN M A, ZAMAN S, ABBAS A, et al. Sodium hyroxyethylcellulose adipate: An efficient and reusable sorbent for cadmium uptake from spiked high-hardness ground water [J]. Arabian Journal of Chemistry, 2018, 13: 2766-2777.
[2] YU S J, LIU Y, AN Y J, et al. Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions [J]. Environmental Pollution, 2018, 242: 1-11. doi: 10.1016/j.envpol.2018.06.031
[3] XU L, HUO X, LIU Y, et al. Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area [J]. Chemosphere, 2020, 246: 125829. doi: 10.1016/j.chemosphere.2020.125829
[4] SHAH S, JEONG K S, PARK H, et al. Environmental pollutants affecting children's growth and development: Collective results from the MOCEH study, a multi-centric prospective birth cohort in Korea [J]. Environment International, 2020, 137: 105547. doi: 10.1016/j.envint.2020.105547
[5] NWOKOCHA C R, PALACIO J, RATTRAY V R, et al Protective effects of apocynin against cadmium toxicity and serum parameters; evidence of a cardio-protective influence[J]. Inorganica Chimica Acta, 2020, 503: 119411.
[6] JARUP L, AKESSON A. Current status of cadmium as an environmental health problem. [J]. Toxicol Appl Pharmacol, 2009, 238(3): 201-208. doi: 10.1016/j.taap.2009.04.020
[7] KHAN Z H, GAO M L, QIU W W, et al. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution [J]. Chemosphere, 2019, 246: 125701.
[8] MASHKOOR F, NASAR A. Magsorbents: Potential candidates in wastewater treatment technology – A review on the removal of methylene blue dye [J]. Journal of Magnetism and Magnetic Materials, 2020, 500: 166408. doi: 10.1016/j.jmmm.2020.166408
[9] WU Y H, PENG H W, LIU Y, et al. Environmental remediation of heavy metal ions by novel-nanomaterials: A review [J]. Environmental Pollution, 2019, 246: 608-620. doi: 10.1016/j.envpol.2018.12.076
[10] ZOU Y D, WANG X X, KHAN A, et al. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review [J]. Environmental Science & Technology, 2016, 50(14): 7290-7304.
[11] 陈海军, 黄舒怡, 张志宾, 等. 功能性纳米零价铁的构筑及其对环境放射性核素铀的富集应用研究进展[J]. 化学学报, 2017, 75(6): 560-574. CHEN H J, HUANG S Y, ZHANG Z B, et al, Synthesis of Functional nanoscale zero-valent iron composites for the application of radioactive uranium enrichment from environment: A review[J]. Acta Chimica Sinica, 2017, 75(6): 560-574(in Chinese).
[12] 张玉荣, 吴杰, 朱慧杰, 等. 纳米铁负载材料应用研究 [J]. 河南城建学院学报, 2012, 21(1): 35-39. doi: 10.3969/j.issn.1674-7046.2012.01.010
[13] LI M Q, MU Y, SHANG H, et al. Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(Ⅵ) removal [J]. Applied Catalysis B:Environmental, 2020, 263: 118364. doi: 10.1016/j.apcatb.2019.118364
[14] LIU J, LIU A, ZHANG W X. The influence of polyelectrolyte modification on nanoscale zero-valent iron (nZVI): Aggregation, sedimentation, and reactivity with Ni(Ⅱ) in water [J]. Chemical Engineering Journal, 2016, 303: 268-274. doi: 10.1016/j.cej.2016.05.132
[15] WANG M, CHENG W, WAN T, et al. Mechanistic investigation of U(Ⅵ) sequestration by zero-valent iron/activated carbon composites [J]. Chemical Engineering Journal, 2018, 362: 99-106.
[16] GOSWAMI A, KADAM R G, TUCEK J, et al. Fe(0)-embedded thermally reduced graphene oxide as efficient nanocatalyst for reduction of nitro compounds to amines [J]. Chemical Engineering Journal, 2020, 382: 122469. doi: 10.1016/j.cej.2019.122469
[17] HUANG L H, ZHOU S J, JIN F, et al. Characterization and mechanism analysis of activated carbon fiber felt-stabilized nanoscale zero-valent iron for the removal of Cr(Ⅵ) from aqueous solution [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 447: 59-66.
[18] XING M, XU L J, WANG J L. Mechanism of Co(Ⅱ) adsorption by zero valent iron/graphene nanocomposite. [J]. Journal of Hazardous Materials, 2016, 301: 96-286.
[19] MONTESINOS V N, QUICI N HALAC E B, et al. Highly efficient removal of Cr(Ⅵ) from water with nanoparticulated zerovalent iron: Understanding the Fe(Ⅲ)–Cr(Ⅲ) passive outer layer structure [J]. Chemical Engineering Journal, 2014, 244: 569-575. doi: 10.1016/j.cej.2014.01.093
[20] JABEEN H, CHANDRA V, JUNG S, et al. Enhanced Cr(Ⅵ) removal using iron nanoparticle decorated graphene. [J]. Nanoscale, 2011, 3(9): 3583-3585. doi: 10.1039/c1nr10549c
[21] 袁永海, 尹昌慧, 施意华, 等. 石墨烯负载零价纳米铁材料的合成及去除水中Cr(Ⅵ)的研究 [J]. 中国无机分析化学, 2017, 7(2): 1-5. doi: 10.3969/j.issn.2095-1035.2017.02.001 YUAN Y H, YIN C H, SAHI Y H, et al. Synthesis of Graphene-sopported Nano Fe(0) and Removal of Cr(Ⅵ) from Aqueous Solution. Chinese [J]. Journal of Inorganic Analyital Chemistry, 2017, 7(2): 1-5(in Chinese). doi: 10.3969/j.issn.2095-1035.2017.02.001
[22] LI J, CHEN C L, ZHANG R, et al. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions. [J]. Chemistry, An Asian Journal, 2015, 10(6): 1410-1417. doi: 10.1002/asia.201500242
[23] XU C B, YANG W J, LIU W J, et al. Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite [J]. Journal of Environmental Sciences, 2018, 67: 14-22. doi: 10.1016/j.jes.2017.11.003
[24] SHANG J G, GAO J, XI J T, et al. Immobilization of Cr(Ⅵ) from solution by a graphene oxide‐nZVI/biochar composite [J]. Water Environment Research, 2019, 91(7): 565-572. doi: 10.1002/wer.1059
[25] KUMARATHILAKA P, JAYAWEERA V, WIJESEKARA H, et al. Insights into Starch coated nanozero valent iron-graphene composite for Cr(Ⅵ) removal from aqueous medium [J]. Journal of Nanomaterials, 2016, 2016: 1-10.
[26] 王灿. 石墨烯负载零价纳米铁去除水中砷的研究[D]. 广州: 华南理工大学, 2014. WANG C, Removal of As(Ⅲ) and As(Ⅴ) from aqueous solutionsusing nanoscale zero valent iron-reduced graphite oxidemodified composites[D]. Guangzhou: South China University of Technology, 2014(in Chinese).
[27] ZHANG K, DWIVEDI V, CHI C Y, et al. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water [J]. Journal of Hazardous Materials, 2010, 182(1-3): 162-168. doi: 10.1016/j.jhazmat.2010.06.010
[28] 郭绍雄, 李悦, 胡增荣, 等. 石墨烯增强铜基复合材料的研究进展 [J]. 热加工工艺, 2019, 49(6): 17-31. GUO S X, LI Y, HU Z R, et al. Research progress of graphene reinforced copper matrix composites [J]. Hot Working Technology, 2019, 49(6): 17-31(in Chinese).
[29] 冯新, 刘志烽, 万俊杰, 等. 纳米铁/石墨烯插层复合材料制备及Cr 6+去除 [J]. 环境科学与技术, 2019, 42(1): 15-22. FENG X, LIU Z F, WAN J J, et al. Synthesis of nano zero-valent iron intercalated graphene and removal of Cr6+ [J]. Environmental Science & Technology, 2019, 42(1): 15-22(in Chinese).
[30] LV X S, XUE X Q, JIANG G M, et al. Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (Ⅵ) removal from aqueous solution [J]. Journal of colloid and Interface Science, 2014, 417: 51-59. doi: 10.1016/j.jcis.2013.11.044
[31] SHAO D D, HOU G S, LI J X, et al. PANI/GO as a super adsorbent for the selective adsorption of uranium(Ⅵ) [J]. Chemical Engineering Journal, 2014, 255: 604-612. doi: 10.1016/j.cej.2014.06.063
[32] GUO J, WANG R Y, TJIU W W, et al. Synthesis of Fe nanoparticles@graphene composites for environmental applications [J]. Journal of Hazardous Materials, 2012, 225-226: 63-73. doi: 10.1016/j.jhazmat.2012.04.065
[33] NG S W, NOOR N, ZHAENG Z J. Graphene-based two-dimensional Janus materials [J]. NPG Asia Materials, 2018, 10: 217-237. doi: 10.1038/s41427-018-0023-8
[34] MEHRABI N, MASUD A, AFOLABI M, et al. Magnetic graphene oxide-nano zero valent iron (GO–nZVI) nanohybrids synthesized using biocompatible cross-linkers for methylene blue removal [J]. RSC Advances, 2019, 9(2): 963-973. doi: 10.1039/C8RA08386J
[35] 张一铭. 氧化石墨基复合材料的制备及铀吸附性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. ZHANG Y M, Preparation and adsorption properties of uranium on graphene oxide composite material[D]. Haerbin: Harbin Engineering University, 2019(in Chinese).
[36] YU C, SHAO J C, SUN W J, et al. Treatment of lead contaminated water using synthesized nano-iron supported with bentonite/graphene oxide [J]. Arabian Journal of Chemistry, 2020, 13(1): 3474-3483. doi: 10.1016/j.arabjc.2018.11.019
[37] MANDAL S, PU S Y, HE L L, et al. Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil [J]. Environmental Pollution, 2020, 259: 113851. doi: 10.1016/j.envpol.2019.113851
[38] SUN Y B, DING C C, CHENG W C, et al. Simultaneous adsorption and reduction of U(Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron [J]. Journal of Hazardous Materials, 2014, 280: 399-408. doi: 10.1016/j.jhazmat.2014.08.023
[39] REN L M, DONG J, CIN Z F, et al. Reduced graphene oxide-nano zero value iron(rGO-nZVI) micro-electrolysis accelerating Cr(Ⅵ) removal in aquifer [J]. Journal of Environmental Sciences, 2018, 73(11): 96-106.
[40] 董军, 任黎明, 迟子芳, 等. 氧化石墨烯负载纳米零价铁(rGO-nZⅥ)去除地下水中Cr(Ⅵ)的XPS谱学表征 [J]. 光谱学与光谱分析, 2017, 37(1): 250-255. DONG J, REN L M, CHI Z F, et al. Analysis of XPS in the removal of Cr(Ⅵ) from groundwater with rGO-nZⅥ [J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 250-255(in Chinese).
[41] ZHANG Y M, ZHANG H S, LIU Q, et al. Polypyrrole modified Fe0-loaded graphene oxide for the enrichment of uranium(VI) from simulated seawater [J]. Dalton Transactions, 2018, 47: 12984. doi: 10.1039/C8DT02819B
[42] CHEN L L, FENG S J, ZHAO D L, et al. Efficient sorption and reduction of U(Ⅵ) on zero-valent iron-polyaniline-graphene aerogel ternary composite [J]. Journal of Colloid And Interface Science, 2017, 490: 197-206. doi: 10.1016/j.jcis.2016.11.050
[43] 徐珊, 于艳, 曹宝月, 等. 膨胀石墨负载氧化锌吸附废水中的Cr(Ⅵ) [J]. 水处理技术, 2019, 45(11): 76-79,84. XU S, YU Y, CAO B Y, et al. Adsorption of Cr(Ⅵ) in wastewater by expanded graphite supported zinc oxide [J]. Technology of Water Treatment, 2019, 45(11): 76-79,84(in Chinese).
[44] 徐从斌, 杨文杰, 孙宏亮, 等. 膨胀石墨负载零价铁的合成及其对水中Pb(Ⅱ)去除效果与机制 [J]. 无机材料学报, 2018, 33(1): 41-47. doi: 10.15541/jim20170157 XU C B, YANG W J, SUN H L, et al. Performance and mechanism of Pb(Ⅱ) removal by expanded graphite loaded with zero-valent iron [J]. Journal of Inorganic Materials, 2018, 33(1): 41-47(in Chinese). doi: 10.15541/jim20170157
[45] LI X Y, AI L H, JIANG J. Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(Ⅵ) removal from aqueous solution: Surface corrosion retard induced the enhanced performance [J]. Chemical Engineering Journal, 2016, 288: 789-797. doi: 10.1016/j.cej.2015.12.022
[46] LI J, CHEN C L, ZHU K, et al. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal [J]. Chemical Engineering Journal, 2016, 288: 389-394. doi: 10.1016/j.jtice.2015.09.010
[47] JABEEN H, KEMP K C, CHANDRA V. Synthesis of nano zerovalent iron nanoparticles – Graphene composite for the treatment of lead contaminated water [J]. Journal of Environmental Management, 2013, 130(30): 429-435.
[48] XIAO X F, WANG Q Q, OWENS G, et al. Reduced graphene oxide/iron nanoparticles used for the removal of Pb (Ⅱ) by one step green synthesis [J]. Journal of Colloid and Interface ence, 2019, 557: 598-607. doi: 10.1016/j.jcis.2019.09.058
[49] ZHU H J, GAO H Y, HUANG X M, et al. The uptake of europium by reduced graphene oxide-supported nanoscale zerovalent iron investigated by batch and modeling techniques [J]. Journal of Environmental Chemical Engineering, 2015, 3(4): 2974-2980. doi: 10.1016/j.jece.2015.10.014
[50] LI Z J, WANG L, YUAN L Y, et al. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite [J]. Journal of Hazardous Materials, 2015, 290(jun.15): 26-33.
[51] WANG C, LUO H J, ZHANG Z L, et al. Removal of As(Ⅲ) and As(Ⅴ) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites [J]. Journal of Hazardous Materials, 2014, 268(15): 124-131.
[52] ZHANG Q, ZHAO D L, DING Y, et al. Synthesis of Fe–Ni/graphene oxide composite and its highly efficient removal of uranium(Ⅵ) from aqueous solution [J]. Journal of Cleaner Production, 2019, 230: 1305-1315. doi: 10.1016/j.jclepro.2019.05.193
[53] 陈祝炳, 袁永海, 尹昌慧, 等. 石墨烯负载纳米铁对废水中铅的去除 [J]. 矿产与地质, 2017, 31(4): 808-811. doi: 10.3969/j.issn.1001-5663.2017.04.024
[54] LV X S, ZHANG Y L, FU W Y, et al. Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (Ⅵ) removal [J]. Journal of Colloid and Interface Science, 2017, 506: 633-643. doi: 10.1016/j.jcis.2017.07.024