[1] |
中华人民共和国住房和城乡建设部. 2020年城乡建设统计年鉴[EB/OL]. [2021-10-12]. http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/w02021101222731370199062500.zip,2020.
|
[2] |
杨倩茜. 超声破解预处理对剩余污泥厌氧消化的适应性研究[D]. 武汉: 华中科技大学, 2011.
|
[3] |
XIAO K K, ABBT-BRAUN G, HORN H. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review[J]. Water Research, 2020, 187: 116441. doi: 10.1016/j.watres.2020.116441
|
[4] |
董嘉琦. Fe(Ⅱ)/PS预处理剩余污泥及其对污泥厌氧消化的影响研究[D]. 南昌: 南昌大学, 2020.
|
[5] |
NGO P L, UDUGAMA I A, GERNAEY K V, et al. Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment[J]. Chemosphere, 2021, 281: 130890. doi: 10.1016/j.chemosphere.2021.130890
|
[6] |
LIU J B, WEI Y S, LI K, et al. Microwave-acid pretreatment: A potential process for sludge dewaterability[J]. Water Research, 2016, 90: 225-234. doi: 10.1016/j.watres.2015.12.012
|
[7] |
肖雄. 高含固污泥热水解工艺优化及其对厌氧消化的影响研究[D]. 北京: 北京化工大学, 2020.
|
[8] |
万甜, 闫幸幸, 任杰辉, 等. Fe(II) 活化过硫酸盐改善污泥脱水性能[J]. 环境工程学报, 2020, 14(1): 189-196. doi: 10.12030/j.cjee.201902067
|
[9] |
ZHOU A J, WEI Y L, FAN Y X, et al. Sulfate reduction-mediated syntrophic microbiomes accelerated waste-activated sludge fermentation on the basis of ${ {\mathrm{S}\mathrm{O}}_{4}^{•-} }$ oxidation and eliminated superfluous sulfate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9325-9334.
|
[10] |
WEI L L, XIA X H, ZHU F Y, et al. Dewatering efficiency of sewage sludge during Fe2+-activated persulfate oxidation: Effect of hydrophobic/hydrophilic properties of sludge EPS[J]. Water Research, 2020, 181: 115903. doi: 10.1016/j.watres.2020.115903
|
[11] |
LUO J Y, WU L J, FENG Q, et al. Synergistic effects of iron and persulfate on the efficient production of volatile fatty acids from waste activated sludge: Understanding the roles of bioavailable substrates, microbial community & activities, and environmental factors[J]. Biochemical Engineering Journal, 2019, 141: 71-79. doi: 10.1016/j.bej.2018.10.010
|
[12] |
CHENG X, GUO H G, ZHANG Y L, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J]. Water Research, 2017, 113: 80-88. doi: 10.1016/j.watres.2017.02.016
|
[13] |
USHANI U, LU X Q, WANG J H, et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the-art review[J]. Chemical Engineering Journal, 2020, 402: 126232. doi: 10.1016/j.cej.2020.126232
|
[14] |
DUAN X G, AO Z M, ZHOU L, et al. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation[J]. Applied Catalysis B:Environmental, 2016, 188: 98-105. doi: 10.1016/j.apcatb.2016.01.059
|
[15] |
HU P D, LONG M C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
|
[16] |
VARANASI L, COSCARELLI E, KHAKSARI M, et al. Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-based advanced oxidation processes[J]. Water Research, 2018, 135: 22-30. doi: 10.1016/j.watres.2018.02.015
|
[17] |
LI K, WANG J X, LIU J B, et al. Advanced treatment of municipal wastewater by nanofiltration: Operational optimization and membrane fouling analysis[J]. Journal of Environmental Sciences, 2016, 43: 106-117. doi: 10.1016/j.jes.2015.09.007
|
[18] |
LI X W, DAI X H, TAKAHASHI J, et al. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy[J]. Bioresource Technology, 2014, 159: 412-420. doi: 10.1016/j.biortech.2014.02.085
|
[19] |
樊雅欣, 刘红燕, 潘凌峰, 等. 活化方式对过硫酸盐强化剩余污泥发酵的影响[J]. 中国环境科学, 2019, 39(6): 2460-2466. doi: 10.3969/j.issn.1000-6923.2019.06.028
|
[20] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[21] |
FROLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761. doi: 10.1007/BF00164784
|
[22] |
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017
|
[23] |
XIE P C, MA J, LIU W, et al. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals[J]. Water Research, 2015, 69: 223-233. doi: 10.1016/j.watres.2014.11.029
|
[24] |
XIAO S, CHENG M, ZHONG H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review[J]. Chemical Engineering Journal, 2020, 384: 123265. doi: 10.1016/j.cej.2019.123265
|
[25] |
WANG S L, WU J F, LU X Q, et al. Removal of acetaminophen in the Fe2+/persulfate system: Kinetic model and degradation pathways[J]. Chemical Engineering Journal, 2019, 358: 1091-1100. doi: 10.1016/j.cej.2018.09.145
|
[26] |
BU L J, SHI Z, ZHOU S Q. Modeling of Fe(II)-activated persulfate oxidation using atrazine as a target contaminant[J]. Separation and Purification Technology, 2016, 169: 59-65. doi: 10.1016/j.seppur.2016.05.037
|
[27] |
VICENTE F, SANTOS A, ROMERO A, et al. Kinetic study of diuron oxidation and mineralization by persulphate: Effects of temperature, oxidant concentration and iron dosage method[J]. Chemical Engineering Journal, 2011, 170: 127-135. doi: 10.1016/j.cej.2011.03.042
|
[28] |
GUO S D, HUANG Y X, ZHOU L, et al. Improvement of sludge dewaterability and disintegration efficiency using electrolytic zero-valent iron activated peroxymonosulfate[J]. Water Science & Technology, 2021, 84(2): 458-468.
|
[29] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environment Science& Technology, 2003, 37(24): 5701-5710.
|
[30] |
陈诗雨, 李燕, 李爱民. 溶解性有机物研究中三维荧光光谱分析的应用[J]. 环境科学与技术, 2015, 38(5): 64-68.
|
[31] |
CHANG B, BIAN C, GE D D, et al. Enhancement of waste activated sludge dewaterability by ultrasound-activated persulfate oxidation: Operation condition, sludge properties, and mechanisms[J]. Chemosphere, 2021, 262: 128385. doi: 10.1016/j.chemosphere.2020.128385
|
[32] |
XIAO K K, CHEN Y, JIANG X, et al. Comparison of different treatment methods for protein solubilisation from waste activated sludge[J]. Water Research, 2017, 122: 492-502. doi: 10.1016/j.watres.2017.06.024
|