[1] KHAN M U, MALIK R N, MUHAMMAD S, et al. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in pakistan [J]. Chemosphere, 2013, 93(10): 2230-2238. doi: 10.1016/j.chemosphere.2013.07.067
[2] 吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性 [J]. 环境化学, 2015, 34(9): 1703-1709. doi: 10.7524/j.issn.0254-6108.2015.09.2015031108 WU Q W, MENG L, ZHANG Z H, et al. Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions [J]. Environmental Chemistry, 2015, 34(9): 1703-1709(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.09.2015031108
[3] CHEN L, LIAN S, LIU M D, et al. Trans-provincial health impacts of atmospheric mercury emissions in China [J]. Nat Commun, 2019, 10(1): 1484. doi: 10.1038/s41467-019-09080-6
[4] ELAIGWU S E, ROCHER V, KYRIAKOU G, et al. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3467-3473. doi: 10.1016/j.jiec.2013.12.036
[5] FAN T, LIU Y G, FENG B Y, et al. Biosorption of Cadmium(Ⅱ), Zinc(Ⅱ) and Lead(Ⅱ) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics [J]. Journal of Hazardous Materials, 2008, 160(23): 655-661.
[6] MEUNIER N, DROGUI P, MONTANE C, et al. Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate [J]. Journal of Hazardous Materials, 2006, 137(1): 581-590. doi: 10.1016/j.jhazmat.2006.02.050
[7] MUTLU A, LEE B, PARK G, et al. Long-term concentrations of airborne cadmium in metropolitan cities in Korea and potential health risks [J]. Atmospheric Environment, 2012, 47: 164-173. doi: 10.1016/j.atmosenv.2011.11.019
[8] HE H J, XIANG Z H, CHEN X J, et al. Biosorption of Cd(Ⅱ) from synthetic wastewater using dry biofilms from biotrickling filters [J]. International Journal of Environmental Science and Technology, 2018, 15(7): 1491-1500. doi: 10.1007/s13762-017-1507-8
[9] 王璐, 赵保卫, 马锋锋, 等. 马铃薯秸秆生物炭对黄土吸附Cd(Ⅱ)的影响 [J]. 环境化学, 2016, 35(7): 1422-1430. doi: 10.7524/j.issn.0254-6108.2016.07.2015121103 WANG L, ZHAO B W, MA F F, et al. Effects of biochar derived from potato straw on adsorption of Cd(Ⅱ) onto loess [J]. Environmental Chemistry, 2016, 35(7): 1422-1430(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.07.2015121103
[10] BEESLEY L, MORENOJIMENEZ E, GOMEZEYLES J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils [J]. Environmental Pollution, 2011, 159(12): 3269-3282. doi: 10.1016/j.envpol.2011.07.023
[11] SHEN Z T, TIAN D, ZHANG X Y, et al. Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution [J]. Chemosphere, 2018, 190: 260-266. doi: 10.1016/j.chemosphere.2017.09.140
[12] XU X Y, CAO X D, ZHAO L, et al. Comparison of rice husk and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars [J]. Chemosphere, 2013, 92(8): 955-961. doi: 10.1016/j.chemosphere.2013.03.009
[13] SHEN Z T, JIN F, WANG F, et al. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood [J]. Bioresource Technology, 2015, 193: 553-556. doi: 10.1016/j.biortech.2015.06.111
[14] SHEN Z T, HOU D Y, ZHAO B, et al. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing [J]. Science of The Total Environment, 2018, 619: 185-193.
[15] DING W C, DONG X L, IME I M, et al. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars [J]. Chemosphere, 2014, 105: 68-74. doi: 10.1016/j.chemosphere.2013.12.042
[16] PRADHAN P, ARORA A, MAHAJANI S M, et al. Pilot scale evaluation of fuel pellets production from garden waste biomass [J]. Energy for Sustainable Development, 2018, 43: 1-14. doi: 10.1016/j.esd.2017.11.005
[17] SHI Y, GE Y, CHANG J, et al. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development [J]. Renewable & Sustainable Energy Reviews, 2013, 22: 432-437.
[18] GUPTA A, THENGANE S K, MAHAJANI S M, et al. CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study [J]. Bioresource Technology, 2018, 263: 180-191. doi: 10.1016/j.biortech.2018.04.097
[19] IPPOLITO J A, BERRY C M, STRAWN D G, et al. Biochars reduce mine land soil bioavailable metals [J]. Journal of Environmental Quality, 2017, 46(2): 411-419. doi: 10.2134/jeq2016.10.0388
[20] 周润娟. 水葫芦生物炭对重金属竞争吸附特性及机制研究[D]. 芜湖: 安徽师范大学, 2019. ZHAO R J. Study on competitive adsorption characteristics and mechanisms of heavy metals by biochar derived from water hyacinth[D]. Wuhu: Anhui Normal University, 2019 (in Chinese).
[21] 汤嘉雯, 陈金焕, 王凯男, 等. 加拿大一枝黄花生物炭对Cd 2+ 的吸附特性及机理 [J]. 农业环境科学学报, 2019, 38(6): 1339-1348. doi: 10.11654/jaes.2018-1290 TANG J W, CHEN J H, WANG K N, et al. Characteristics and mechanism of cadmium adsorption by Solidago canadensis-derived biochar [J]. Journal of Agro-Environment Science, 2019, 38(6): 1339-1348(in Chinese). doi: 10.11654/jaes.2018-1290
[22] LIANG X Y, LIU S R, WANG H, et al. Variation of carbon and nitrogen stoichiometry along a chronosequence of natural temperate forest in northeastern China [J]. Journal of Plant Ecology, 2018, 11(3): 339-350. doi: 10.1093/jpe/rtx008
[23] FIDEL RIVKA. B, LAIRD DAVID. A, THOMPSON M L, et al. Characterization and quantification of biochar alkalinity [J]. Chemosphere, 2017, 167(1): 367-373.
[24] 余贵芬, 青长乐, 牟树森, 等. 汞在腐殖酸上的吸附与解吸特征[J] 环境科学学报, 2001, 21(5): 601-606. YU G F, QING C L, MOU S S, et al. Characteristics of mercury adsorption and desorption on humic acids[J]. Acta Scientiae Circumstantiae, 2001, 21(5): 601-606 (in Chinese).
[25] CHENG Y, YANG C P, HE H J, et al. Biosorption of Pb(Ⅱ) ions from aqueous solutions by waste biomass from biotrickling filters: Kinetics, isotherms, and thermodynamics [J]. Journal of Environmental Engineering, 2016, 142(9): 689-695.
[26] GADKIN J W, STEINER C, HARRIS K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the ASABE, 2008, 51(6): 2061-2069. doi: 10.13031/2013.25409
[27] SHEN Z T, ZHANG Y Y, JIN F, et al. Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars [J]. Science of the Total Environment, 2017, 609: 1401-1410. doi: 10.1016/j.scitotenv.2017.08.008
[28] 毛凯, 陈颢明, 陈天民, 等. 不同粒径污泥生物质炭对水体中Zn污染的吸附效应研究 [J]. 环境科学学报, 2020, 40(2): 536-545. MAO K, CHEN H M, CHEN T N, et al. Adsorption effects of sludge biochar of different particie sizes on Zn contamination in water [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 536-545(in Chinese).
[29] 高凯芳. 原材料和温度对生物炭的理化特性及镉吸附能力的影响研究[D]. 南昌: 江西师范大学, 2016: 16-17. GAO K F. Effects of raw materials and temperature on physical and chemical properties and cadmium adsorption capacity of biochar[D]. Nanchang Normal University, Jiangxi, 2016: 16-17 (in Chinese).
[30] 程德义, 杜超, 黄兆琴, 等. 巯基化稻壳炭吸附废水中 Zn(Ⅱ)试验研究 [J]. 环境工程技术学报, 2018, 25(5): 519-526. CHENG De Y, DU C, HUANG Z Q, et al. Adsorption of Zn (Ⅱ) from wastewater by sulfhydryl rice husk carbon [J]. Journal of Environmental Engineering Technology, 2018, 25(5): 519-526(in Chinese).
[31] SUN J, LIAN F, LIU Z, et al. Biochars derived from various crop straws: characterization and Cd(II) removal potential [J]. Ecotoxicology and Environmental Safety, 2014, 105: 226-231.
[32] 戴静, 刘阳生. 四种原料热解产生的生物炭对Pb2+和Cd2+的吸附特性研究 [J]. 北京大学学报(自然科学版), 2013, 49(6): 1075-1082. DAI J, LIU Y S. Adsorption of Pb2+ and Cd2+ onto biochars derived from pyrolysis of four beikinds of biomasses [J]. Journal of Peking University, 2013, 49(6): 1075-1082(in Chinese).
[33] LEE S J, PARK J H, AHN Y, et al. Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions [J]. Water Air and Soil Pollution, 2015, 226(2): 9. doi: 10.1007/s11270-014-2275-4
[34] ZHANG F, WANG X, YIN D X, et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) [J]. Journal of Environmental Management, 2015, 153: 68-73.
[35] XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar [J]. Environmental Science and Pollution Research, 2013, 20(1): 358-368. doi: 10.1007/s11356-012-0873-5
[36] RUTHIRAAN M, MUBARAK N M, THINES R K, et al. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater [J]. Korean Journal of Chemical Engineering, 2015, 32(3): 446-457. doi: 10.1007/s11814-014-0260-7
[37] 胡术刚, 栾小凯, 颜昌宙, 等. 改性生物炭的制备及其对水中镉离子的吸附试验 [J]. 环境工程, 2019, 37(5): 15-19,31. HU S G, LUAN X K, YAN C Z, et al. Preparation of modified biochar and its adsorption for cadmium ions in water [J]. Environmental. Engineering, 2019, 37(5): 15-19,31(in Chinese).
[38] 黄菲, 闫梦, 常建宁, 等. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能 [J]. 环境化学, 2020, 39(4): 1116-1128. doi: 10.7524/j.issn.0254-6108.2019091604 HUANG F, RUAN M, CHANG J N, et al. Adsorption performance of Cu2+ and Cd2+ in water by different biochars derived from spent mushroom substrate [J]. Environmental Chemistry, 2020, 39(4): 1116-1128(in Chinese). doi: 10.7524/j.issn.0254-6108.2019091604
[39] ZHAO S, JI Q, LI Z, et al. Characteristics and mineralization in soil of apple-derived biochar producecd at different temperatures [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 183-192.
[40] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar) [J]. Environmental Science & Technology, 2010, 44(4): 1247-1253.
[41] WU W X, YANG M, FENG Q B, et al. Chemical characterization of rice straw-derived biochar for soil amendment [J]. Biomass & Bioenergy, 2012, 47: 268-276.
[42] 张越, 林珈羽, 刘沅, 等. 改性生物炭对镉离子吸附性能研究 [J]. 武汉科技大学学报, 2016, 39(1): 48-52. ZHANG Y, LIN J Y, LIU Y, et al. Adsorption of cadmium ions by chemically modified biochar [J]. Journal of Wuhan University of Science and Technology, 2016, 39(1): 48-52(in Chinese).
[43] WANG C M, CHENG Y, WANG Y L, et al. Self-assembly of quasi-monocrystal CdCO3 nanorings [J]. Chinese Journal of Structural Chemistry, 2007, 26(7): 757-762.
[44] SHAN R R, YAN L G, YANG K, et al. Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies [J]. Journal of Hazardous Materials, 2015, 299: 42-49. doi: 10.1016/j.jhazmat.2015.06.003
[45] ZHU X L, LV B X, SHANG X Q, et al. The immobilization effects on Pb, Cd and Cu by the inoculation of organic phosphorus-degrading bacteria (OPDB) with rapeseed dregs in acidic soil [J]. Geoderma, 2019, 350: 1-10. doi: 10.1016/j.geoderma.2019.04.015
[46] LUO N, MAO L, JIANG L, et al. Directly ultraviolet photochemical deposition of silver nanoparticles on silica spheres: Preparation and characterization [J]. Materials Letters, 2009, 63(1): 154-156. doi: 10.1016/j.matlet.2008.09.033
[47] ZHONG K F, JIN P, CHEN Q W, et al. Ni hollow nanospheres: Preparation and catalytic activity [J]. Journal of Nanomaterials, 2006, 2006(3): 499-502.
[48] 罗凯, 陈汉平, 王贤华, 等. 生物质焦及其特性 [J]. 可再生能源, 2007, 25(1): 17-19. doi: 10.3969/j.issn.1671-5292.2007.01.005 LUO K, CHEN H P, WANG X H, et al. Characterization of biochar and its characteristics [J]. Renewable. Energy Resources, 2007, 25(1): 17-19(in Chinese). doi: 10.3969/j.issn.1671-5292.2007.01.005
[49] YUAN J H, XU R K, ZHANG H, et al. The forms of alkalis in the biochar produced from crop residues at different temperatures [J]. Bioresource Technology, 2011, 102(3): 3488-3497. doi: 10.1016/j.biortech.2010.11.018
[50] 李瑞月. 秸秆生物质炭及其改性炭对重金属的吸附性能及机理研究[D]. 南京: 南京农业大学, 2015: 27-28. LI R Y. The adsorption capacity and mechanism of residual-straw biochar and enhancedbiochar for heavy metal removal[D]. Nanjing: Agricultural University Jiangsu, 2015: 27-28 (in Chinese).
[51] 赵伟宁, 杨兴, 何丽芝, 等. 热解温度对典型南方木本园林废弃物生物质炭理化特性的影响 [J]. 浙江农林大学学报, 2018, 35(6): 24-33. ZHAO W N, YANG X, HE L Z, et al. Pyrolysis temperature with physicochemical properties of biochars derived from typical urban woody green wastes in southern China [J]. Journal of Zhejiang A&F University, 2018, 35(6): 24-33(in Chinese).
[52] 吴成, 张晓丽, 李关宾. 黑碳吸附汞砷铅镉离子的研究 [J]. 农业环境科学学报, 2007, 26(2): 770-774. doi: 10.3321/j.issn:1672-2043.2007.02.070 WU C, ZHANG X L, LI GB. Sorption of Hg2+, As3+, Pb2+and Cd2+by black carbon [J]. Journal of Agro-Environment Science, 2007, 26(2): 770-774(in Chinese). doi: 10.3321/j.issn:1672-2043.2007.02.070
[53] 温尔刚, 赵伟宁, 杨兴, 等. 法国梧桐叶片炭和枝条炭对水中Pb2+的吸附特性影响 [J]. 水土保持学报, 2019, 33(2): 311-318. WEN E G, ZHAO W N, YANG X, et al. Effect of biochars derived from platanus orientalis branches and leaves on the adsorption of Pb2+ in aqueous solution [J]. Journal of Soil and Water Conservation, 2019, 33(2): 311-318(in Chinese).
[54] CHEN H M, TANG L Y, WANG Z J, et al. Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar [J]. Environmental Pollution, 2020, 263(7): 395-401.
[55] 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附 [J]. 农业环境科学学报, 2015, 34(5): 1001-1008. doi: 10.11654/jaes.2015.05.025 LI R Y, CHEN D, LI L Q, et al. Adsorption of Pb2+ and Cd2+in aqueous solution by biochars derived from different crop residues [J]. journal of Agro-Environmengt Science, 2015, 34(5): 1001-1008(in Chinese). doi: 10.11654/jaes.2015.05.025
[56] XU X Y, CAO X, D ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar [J]. Environmental Science & Pollution Research International, 2013, 20(1): 358-368.