[1] 居殿春, 周夏芝, 周磊, 等. 低温SCR脱硝催化剂的研究 [J]. 现代化工, 2019, 39(3): 51-54. JU D C, ZHOU X Z, ZHOU L, et al. Study on low-temperature SCR denitration catalyst [J]. Modern Chemical Industry, 2019, 39(3): 51-54(in Chinese).
[2] 李春雨. SCR脱硝催化剂研究及产业现状分析 [J]. 能源工程, 2014(1): 60-64. doi: 10.3969/j.issn.1004-3950.2014.01.013 LI C Y. Investigation of present situation on development of SCR catalyst [J]. Energy Engineering, 2014(1): 60-64(in Chinese). doi: 10.3969/j.issn.1004-3950.2014.01.013
[3] 陈艳平, 程党国, 陈丰秋, 等. Cu-ZSM-5分子筛催化分解及选择性催化还原 NO [J]. 化学进展, 2014, 26(S1): 248-258. CHEN Y P, CHNEG D G, CHEN F Q, et al. NO decomposition and selective catalytic reduction of NO over Cu-ZSM-5Zeolite [J]. Progress in Chemistry, 2014, 26(S1): 248-258(in Chinese).
[4] TRAN K Q, KILPINEN P, KUMAR N. In-situ catalytic abatement of NOx during fluidized bed combustion—A literature study [J]. Applied Catalysis B Environmental, 2008, 78(1/2): 129-138.
[5] QI G S, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania [J]. Applied Catalysis B, Environmental, 2003, 44(3): 217-225. doi: 10.1016/S0926-3373(03)00100-0
[6] YAN L J, LIU Y Y, HU H, et al. Investigations on the antimony promotional effect on CeO2 -WO3 /TiO2 for selective catalytic reduction of NOx with NH3 [J]. Chemcatchem, 2016, 8(13): 2267-2278. doi: 10.1002/cctc.201600332
[7] 周佳丽, 王宝冬, 马静, 等. 锰基低温SCR脱硝催化剂抗硫抗水性能研究进展 [J]. 环境化学, 2018, 37(4): 782-791. doi: 10.7524/j.issn.0254-6108.2017091904 ZHOU J L, WANG B D, MA J, et al. SO2 and H2O poisoning resistance of manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx [J]. Environmental Chemistry, 2018, 37(4): 782-791(in Chinese). doi: 10.7524/j.issn.0254-6108.2017091904
[8] 侯鑫, 李飞, 仵静, 等. 锰基NH3-SCR低温脱硝催化剂研究进展 [J]. 工业催化, 2017, 25(6): 1-8. HOU X, LI F, WU J, et al. Studies of the behaviors of DeNOx low-temperature NH3-SCR catalysts [J]. Industrial Catalysis, 2017, 25(6): 1-8(in Chinese).
[9] 苗永旗, 庄柯, 袁立明. 低温SCR脱硝催化剂研究进展 [J]. 电力科技与环保, 2013, 29(1): 13-15. doi: 10.3969/j.issn.1674-8069.2013.01.005 MIAO Y Q, ZHUANG K, YUAN L M. Research process of low-temperature SCR catalysts [J]. Electric Power Technology and Environmental Protection, 2013, 29(1): 13-15(in Chinese). doi: 10.3969/j.issn.1674-8069.2013.01.005
[10] PARK K H, LEE S M, KIM S S, et al. Reversibility of Mn valence state in MnOx/TiO2 catalysts for low-temperature selective catalytic reduction for NO with NH3 [J]. Catalysis Letters, 2013, 143: 246-253. doi: 10.1007/s10562-012-0952-8
[11] 高翔, 卢徐节, 胡明华. 低温SCR脱硝催化剂综述 [J]. 江汉大学学报, 2014, 42(2): 12-18. GAO X, LU X J, HU M H. Review on low-temperature SCR Denitration catalysts [J]. Journal of JiangHan University, 2014, 42(2): 12-18(in Chinese).
[12] WANG F M, SHEN B X, ZHU S W, et al. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance [J]. Fuel, 2019, 249(AUG.1): 54-60.
[13] JIN R B, LIU Y, WANG Y, et al. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature [J]. Applied Catalysis B:Environmental, 2014, 148-149: 582-588. doi: 10.1016/j.apcatb.2013.09.016
[14] 黄天娇, 张亚平, 庄柯, 等. 蜂窝状Ho改性Fe-Mn/TiO2催化剂的制备及其低温选择催化还原(SCR)脱硝性能 [J]. 燃料化学学报, 2018, 46(3): 319-327. doi: 10.3969/j.issn.0253-2409.2018.03.009 HUANG T J, ZHANG Y P, ZHAUNG K, et al. Preparation of honeycombed holmium-modified Fe-Mn/TiO2 catalyst and its performance in the low temperature selective catalytic reduction of NOx [J]. Journal of Fuel Chemistry and Technology, 2018, 46(3): 319-327(in Chinese). doi: 10.3969/j.issn.0253-2409.2018.03.009
[15] GAO F Y, TANG X L, YI H H, et al. Promotional mechanisms of activity and SO2, tolerance of Co- or Ni- doped MnOx-CeO2, catalysts for SCR of NOx with NH3, at low temperature [J]. Chemical Engineering Journal, 2017, 317(Complete): 20-31.
[16] YANG N Z, GUO R T, PAN E G, et al. The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3 [J]. Fuel, 2016, 169: 87-92. doi: 10.1016/j.fuel.2015.12.009
[17] 卢素红, 李克伦, 黄风林, 等. 锰系低温脱硝催化剂的研究进展 [J]. 现代化工, 2016, 6: 51-54. LU S H, LI K L, HUANG F L, et al. Progress of manganese-based catalysts for low-temperatures elective catalytic reduction of NOx [J]. Modern Chemical Industry, 2016, 6: 51-54(in Chinese).
[18] 金瑞奔. 负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究[D]. 杭州: 浙江大学, 2010. JIN R B. Study on the supported Mn-Ce low-temperature SCR DeNOx catalysts: Preparation, reaction mechanism and SO2 tolerance[D]. Hangzhou: Zhejiang University, 2010.
[19] WANG H J, HUANG B C, YU C L, et al. Research progress, challenges and perspectives on the sulfur and water resistance of catalysts for low temperature selective catalytic reduction of NOx by NH3 [J]. Applied Catalysis A:General, 2019, 588: 117207. doi: 10.1016/j.apcata.2019.117207
[20] ZHANG M H, HUANG B J, JIANG H X, et al. Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx [J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1695-1705. doi: 10.1016/j.cjche.2017.03.030
[21] 姚小江, 张雷, 孔婷婷, 等. 低温氨-选择性催化还原氮氧化物催化剂的研究进展 [J]. 工业催化, 2016, 24(6): 1-9. doi: 10.3969/j.issn.1008-1143.2016.06.001 YAO X J, ZHANG L, KONG T T, et al. Research progress in selective catalytic reduction of nitrogen oxides by ammonia at low temperature [J]. Industrial Catalysis, 2016, 24(6): 1-9(in Chinese). doi: 10.3969/j.issn.1008-1143.2016.06.001
[22] 刘兴誉, 张鹏, 贾媛媛, 等. 基于TiO2载体的锰铈系低温SCR脱硝催化剂研究进展 [J]. 化工环保, 2020, 40(1): 26-31. doi: 10.3969/j.issn.1006-1878.2020.01.005 LIU X Y, ZHANG P, JIA Y Y, et al. Research progresses of TiO2 supported manganese-cerium catalyst for low-temperature SCR denitration [J]. Environmental Protection of Chemical Industry, 2020, 40(1): 26-31(in Chinese). doi: 10.3969/j.issn.1006-1878.2020.01.005
[23] ZHOU A Y, YU D Q, YANG L, et al. Combined effects Na and SO2, in flue gas on Mn-Ce/TiO2, catalyst for low temperature selective catalytic reduction of NO by NH3, simulated by Na2SO4, doping [J]. Applied Surface Science, 2016, 378: 167-173. doi: 10.1016/j.apsusc.2016.03.206
[24] ZHOU L L, LI C T, ZHAO L K, et al. The poisoning effect of PbO on Mn-Ce/TiO2 catalyst for selective catalytic reduction of NO with NH3 at low temperature [J]. Applied Surface Science, 2016, 389(dec.15): 532-539.
[25] ZHANG L J, CUI S P, GUO H X, et al. The influence of K+ cation on the MnOx-CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 at low temperature [J]. Journal of Molecular Catalysis A:Chemical, 2014, 390: 14-21. doi: 10.1016/j.molcata.2014.02.021
[26] 艾双双, 闫东杰, 黄学敏, 等. 锰铈系低温SCR脱硝催化剂的研究进展 [J]. 应用化工, 2018, 47(11): 2520-2524,2530. doi: 10.3969/j.issn.1671-3206.2018.11.050 AI S S, YAN D J, HUANG X M, et al. Research progress of manganese cerium based low temperature selective catalytic reduction of NO [J]. Applied Chemical Industry, 2018, 47(11): 2520-2524,2530(in Chinese). doi: 10.3969/j.issn.1671-3206.2018.11.050
[27] LONG R Q, YANG R T, CHANG R. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe-Mn based catalysts [J]. Chemical Communications, 2002, 5: 452-453.
[28] 张呈祥, 张晓鹏. Mn-Ce系列低温SCR催化剂抗硫性研究进展 [J]. 化工进展, 2015, 34(7): 1866-1871,1932. ZHANG C X, ZHANH X P. Research progress in the SO2 resistance of Mn-Ce SCR catalysts [J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1866-1871,1932(in Chinese).
[29] 张长亮. 酸改性Mn-Co-Ce/TiO2-SiO2低温SCR催化剂抗硫性能及成型的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. ZHANG C L. Study on the anti-sulfur formance and the formation of the SCR catalyst with acid modified Mn-Co-Ce/TiO2-SiO2 at low temperature[D]. Harbin: Harbin Institute of Technology, 2015.
[30] 乔南利, 杨忆新, 宋焕巧, 等. 低温NH3-SCR脱硝催化剂的研究现状与进展 [J]. 化工环保, 2017, 37(3): 282-288. doi: 10.3969/j.issn.1006-1878.2017.03.005 QIAO N L, YANG Y X, SONG H Q, et al. Research status and progresses on NH3-SCR catalysts for low-temperature denitration [J]. Environmental Protection of Chemical Industry, 2017, 37(3): 282-288(in Chinese). doi: 10.3969/j.issn.1006-1878.2017.03.005
[31] LIU F D, HE H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study [J]. Catalysis Today, 2010, 153: 70-76.
[32] 于国峰, 顾月平, 金瑞奔. Mn/TiO2和Mn-Ce/TiO2低温脱硝催化剂的抗硫性研究 [J]. 环境科学学报, 2013, 33(8): 2149-2157. YU G F, GU Y P, JIN R B. Effects of SO2 on the low-temperature SCR Mn/TiO2 and Mn-Ce/TiO2 catalysts [J]. Acta Scientiae Circumstantiae, 2013, 33(8): 2149-2157(in Chinese).
[33] 闫东杰, 玉亚, 黄学敏, 等. SO2对Mn-Ce/TiO2低温SCR催化剂的毒化作用研究 [J]. 燃料化学学报, 2016, 44(2): 232-238. doi: 10.3969/j.issn.0253-2409.2016.02.014 YAN D J, YU Y, HUANG X M, et al. Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature [J]. Journal of Fuel Chemistry and Technology, 2016, 44(2): 232-238(in Chinese). doi: 10.3969/j.issn.0253-2409.2016.02.014
[34] WU Z B, JIN R B, WANG H Q, et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature [J]. Catalysis Communications, 2009, 10(6): 935-939. doi: 10.1016/j.catcom.2008.12.032
[35] WEI L, CUI S P, GUO H X, et al. DRIFT and DFT study of cerium addition on SO2 of Manganese-based Catalysts for low temperature SCR [J]. Journal of Molecular Catalysis A:Chemical, 2016, 421: 102-108. doi: 10.1016/j.molcata.2016.05.013
[36] XIE S Z, LI L L, JIN L J, et al. Low temperature high activity of M (M = Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3 -SCR and in situ DRIFTS for investigating the reaction mechanism [J]. Applied Surface Science, 2020, 515: 146014. doi: 10.1016/j.apsusc.2020.146014
[37] HU H, CAI S X, LI H R, et al. Mechanistic aspects of deNOx processing over TiO2 supported Co-Mn oxide catalysts: Structure–Activity relationships and In Situ DRIFTs analysis [J]. ACS Catalysis, 2015, 5: 6069-6077. doi: 10.1021/acscatal.5b01039
[38] GUO R T, ZHOU Y, PAN W G, et al. Effect of preparation methods on the performance of CeO2 /Al2O3 catalysts for selective catalytic reduction of NO with NH3 [J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 2022-2025. doi: 10.1016/j.jiec.2013.03.010
[39] JIANG B Q, WU Z B, LIU Y, et al. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe−Mn/TiO2 [J]. The Journal of Physical Chemistry C, 2010, 114(11): 4961-4965. doi: 10.1021/jp907783g
[40] LEE T, BAI H. Metal Sulfate poisoning effects over MnFe/TiO2 for selective catalytic reduction of NO by NH3 at low temperature [J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 4848-4858.
[41] LI J H, CHANG H Z, MA L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review [J]. Catalysis Today, 2011, 175(1): 147-156. doi: 10.1016/j.cattod.2011.03.034
[42] LIU C, SHI J W, GAO C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review [J]. Applied Catalysis A General, 2016, 522: 54-69. doi: 10.1016/j.apcata.2016.04.023
[43] PAN S W, LUO H C, LI L, et al. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3 [J]. Journal of Molecular Catalysis A Chemical, 2013, 377: 154-161. doi: 10.1016/j.molcata.2013.05.009
[44] CHANG H Z, CHEN X Y, LI J H, et al. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for IMH3-SCR at low temperatures [J]. Environmental Science & Technology, 2013, 47(10): 5294-5301.
[45] KIJLSTRA W S, BIERVLIET M, POELS E K, et al. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures [J]. Applied Catalysis B Environmental, 1998, 16(4): 327-337. doi: 10.1016/S0926-3373(97)00089-1
[46] 姚程. 低温脱硝催化剂抗水性研究进展 [J]. 四川化工, 2019, 22(2): 9-11. doi: 10.3969/j.issn.1672-4887.2019.02.004 YAO C. Research progress on water resistance of low temperature denitration catalyst [J]. Sichuan Chemical Industry, 2019, 22(2): 9-11(in Chinese). doi: 10.3969/j.issn.1672-4887.2019.02.004
[47] HUANG Z G, LIU Z Y, ZHANG X L, et al. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature [J]. Applied Catalysis B Environmental, 2006, 63(3/4): 260-265.
[48] MARIA C, KRCHER O, ELSENER M. Screening of doped MnOx-CeO2 catalysts for low-temperature NO-SCR [J]. Applied Catalysis B Environmental, 2009, 88(3/4): 413-419.
[49] QU L, LI C T, ZENG G M, et al. Support modification for improving the performance of MnOx–CeOy/γ-Al2O3, in selective catalytic reduction of NO by NH3 [J]. Chemical Engineering Journal, 2014, 242(15): 76-85.
[50] 闫东杰, 刘树军, 黄学敏, 等. SO2和H2O对Mn-Ce/TiO2催化剂低温SCR活性的影响 [J]. 安全与环境学报, 2016, 16: 308-312. YAN D J, LIU S J, HUANG X M, et al. Effects of SO2 and H2O on the SCR ac-tivity of the Mn-Ce/TiO2 catalyst at low temperatures [J]. Journal of Safety and Environment, 2016, 16: 308-312(in Chinese).
[51] LENG X S, ZHANG Z P, LI Y S, et al. Excellent low temperature NH3-SCR activity over MnaCe0.3TiOx (a= 0.1–0.3) oxides: Influence of Mn addition [J]. Fuel Processing Technology, 2018, 181: 33-43. doi: 10.1016/j.fuproc.2018.09.012
[52] LI W, ZHANG C, LI X, et al. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NO, with NH3: Evaluation and characterization [J]. Chinese Journal of Catalysis, 2018, 39(10): 1653-1663. doi: 10.1016/S1872-2067(18)63099-2
[53] ZHU Y W, ZHANG Y P, XIAO R, et al. Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR [J]. Catalysis Communications, 2017, 88: 64-67. doi: 10.1016/j.catcom.2016.09.031
[54] ZHUANG K, ZHANG Y P, HUANG T J, et al. Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR [J]. Journal of Fuel Chemistry & Technology, 2017, 45(11): 1356-1364.
[55] 张蕊. 稀土掺杂铁基SCR脱硝催化剂的制备及性能研究[D]. 内蒙古: 内蒙古科技大学, 2015. ZHANG R. Study on the Preparation and performance of the rare earth doping catalyst of iron-based for SCR[D]. Inner Mongolia: Inner Mongolia University of Science & Technology, 2015.
[56] 姚燕, 马宏卿, 沈伯雄, 等. 稀土元素对Mn/TiO2-PILC低温SCR性能影响研究 [J]. 工程热物理学报, 2012, 33(4): 707-710. doi: 10.1007/s10765-012-1177-1 YAO Y, MA H J, SHEN B X, et al. The modified effects of rare earth to Mn/TiO2-PILC for low temperature SCR [J]. Journal of Engineering Thermophysics, 2012, 33(4): 707-710(in Chinese). doi: 10.1007/s10765-012-1177-1
[57] FAN Z Y, SHI J W, GAO C, et al. Gd-modified MnOx for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance [J]. Chemical Engineering Journal, 2018, 348: 820-830. doi: 10.1016/j.cej.2018.05.038
[58] YU C L, HUANG B C, DONG L F, et al. Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature [J]. Chemical Engineering Journal, 2017, 316(Complete): 1059-1068.
[59] QI G S, YANG R T. A superior catalyst for low-temperature NO reduction with NH3 [J]. Cheminform, 2003, 34(7): 848-849.
[60] GAO C, SHI J W, FAN Z Y, et al. "Fast SCR" reaction over Sm-modified MnOx-TiO2 for promoting reduction of NOx with NH3 [J]. Applied Catalysis A:General, 2018, 564: 102-112. doi: 10.1016/j.apcata.2018.07.017
[61] LIU J, GUO R T, LI M Y, et al. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study [J]. Fuel, 2018, 223: 385-393. doi: 10.1016/j.fuel.2018.03.062
[62] SUN P, GUO R T, LIU S M, et al. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu [J]. Applied Catalysis A General, 2017, 531: 129-138. doi: 10.1016/j.apcata.2016.10.027
[63] GAO C, SHI J W, FAN Z Y, et al. Eu-Mn-Ti mixed oxides for the SCR of NOx with NH3: The effects of Eu-modification on catalytic performance and mechanism [J]. Fuel Processing Technology, 2017, 167: 322-333. doi: 10.1016/j.fuproc.2017.07.006
[64] WAQIF M, BAZIN P, SAUR O, et al. Study of ceria sulfation [J]. Applied Catalysis B Environmental, 1997, 11(2): 193-205.
[65] YAN D J, YU Y, HUANG X M, et al. Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature [J]. Journal of Fuel Chemistry & Technology, 2016, 44(2): 232-238.
[66] YU J, GUO F, WANG Y L, et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. 2010, 95(1/2): 160-168.
[67] SHEN B X, LIU T, ZHAO N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3 [J]. Journal of Environmental Sciences, 2010, 22(9): 1447-1454. doi: 10.1016/S1001-0742(09)60274-6
[68] QI G S, YANG R T, RAMSAY C. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Applied Catalysis B Environmental, 2004, 51(2): 93-106. doi: 10.1016/j.apcatb.2004.01.023
[69] SHEN B X, WANG F M, LIU T. Homogeneous MnOx–CeO2 pellets prepared by a one-step hydrolysis process for low-temperature NH3-SCR [J]. Powder Technology, 2014, 253: 152-157. doi: 10.1016/j.powtec.2013.11.015
[70] SHEN B X, WANG Y Y, WANG F M, et al. The effect of Ce–Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature [J]. Chemical Engineering Journal, 2014, 236: 171-180. doi: 10.1016/j.cej.2013.09.085
[71] LIU Z M, ZHU J Z, LI J H, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3 [J]. ACS Applied Materials & Interfaces, 2014, 6(16): 1044-1050.
[72] 吴彦霞, 梁海龙, 陈鑫, 等. Ni, Co掺杂对Mn-Ce/TiO2催化剂脱硝活性的影响 [J]. 化工环保, 2016, 36(3): 321-325. doi: 10.3969/j.issn.1006-1878.2016.03.017 WU Y X, LIANG H L, CHEN X, et al. Effects of doped Ni, Co on denitrification activity of Mn-Ce/TiO2 catalyst [J]. Environmental Protection Of Chemical Industry, 2016, 36(3): 321-325(in Chinese). doi: 10.3969/j.issn.1006-1878.2016.03.017
[73] PHIL H H, REDDY M P, KUMAR P K, et al. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures [J]. Applied Catalysis B Environmental, 2008, 78(3/4): 301-308.
[74] LEE K J, KUMAR P A, MAQBOOL M S, et al. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity [J]. Applied Catalysis B Environmental, 2013, 142-143(10): 705-717.
[75] WANG Z Y, GUO R T, SHI X, et al. The enhanced performance of Sb-modified Cu/TiO2 catalyst for selective catalytic reduction of NOx with NH3 [J]. Applied Surface Science, 2019, 475: 334-341. doi: 10.1016/j.apsusc.2018.12.281
[76] GUO R T, SUN X, LIU J, et al. Enhancement of the NH3 -SCR catalytic activity of MnTiOx catalyst by the introduction of Sb [J]. Applied Catalysis A, General, 2018, 558: 1-8. doi: 10.1016/j.apcata.2018.03.028
[77] GROSSALE A, NOVA I, TRONCONI E, et al. The chemistry of the NO/NO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis[J]. Journal of Catalysis, 2008, 256(2): 312-322.
[78] KOEBEL M, MADIA G, RAIMONDI F, et al. Enhanced reoxidation of vanadia by NO2 in the fast SCR reaction[J].Journal of Catalysis, 2002, 209(1): 159-165.
[79] 张道军, 马子然, 孙琦, 等. 选择催化还原(SCR)反应机理研究进展 [J]. 化工进展, 2019, 38(4): 22-34. ZHANG D J, MA Z R, SUN Q, et al. Progress in the mechanism of selective catalytic reduction (SCR) reaction [J]. Chemical Industry And Engineering Progress, 2019, 38(4): 22-34(in Chinese).
[80] 戴韵, 李俊华, 彭悦, 等. MnO2的晶相结构和表面性质对低温NH3-SCR反应的影响 [J]. 物理化学学报, 2012, 28(7): 1771-1776. doi: 10.3866/PKU.WHXB201204175 DAI Y, LI J H, PENG Y, et al. Effects of MnO2 crystal structure and surface property on the NH3-SCR reaction at low temperature [J]. Acta Physico-Chimica Sinica, 2012, 28(7): 1771-1776(in Chinese). doi: 10.3866/PKU.WHXB201204175
[81] DENG S C, MENG T T, XU B L, et al. Advanced MnOx/TiO2 catalyst with preferentially exposed anatase {001} facet for low-temperature SCR of NO [J]. ACS Catalysis, 2016, 6(9): 5807-5815. doi: 10.1021/acscatal.6b01121
[82] SONG L Y, ZHANG R, ZANG S M, et al. Activity of selective catalytic reduction of NO over V2O5/TiO2catalysts preferentially exposed anatase {001} and {101} Facets [J]. Catalysis Letters, 2017, 147(4): 934-945. doi: 10.1007/s10562-017-1989-5
[83] LI Q, LI X, LI W, et al. Effect of preferential exposure of anatase TiO2 {001} facets on the performance of Mn-Ce/TiO2 catalysts for low-temperature selective catalytic reduction of NOx with NH3 [J]. Chemical Engineering Journal, 2019, 369: 26-34. doi: 10.1016/j.cej.2019.03.054
[84] ZHANG L, SHI L, HUANG L, et al. Rational design of high-performance DeNOx catalysts based on MnxCo3xO4 nanocages derived from metal-organic frameworks [J]. ACS Catalysis, 2014, 4(6): 1753-1763. doi: 10.1021/cs401185c
[85] ZHANG L, ZHANG D S, ZHANG J P, et al. Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance [J]. Nanoscale, 2013, 5(20): 9821-9825. doi: 10.1039/c3nr03150k
[86] LI S H, HUANG B C, YU C L, et al. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO [J]. Catalysis Communications, 2017, 98: 47-51. doi: 10.1016/j.catcom.2017.04.046
[87] LIU C, GAO G, SHI J W, et al. MnOx-CeO2 shell-in-shell microspheres for NH3-SCR de-NOx at low temperature [J]. Catalysis Communications, 2016, 86: 36-40. doi: 10.1016/j.catcom.2016.08.003