[1] NSIBANDE S A, FORBES P B C. Fluorescence detection of pesticides using quantum dot materials–A review [J]. Analytica Chimica Acta, 2016, 945: 9-22. doi: 10.1016/j.aca.2016.10.002
[2] YAN X, LI H X, SU X G. Review of optical sensors for pesticides [J]. TrAC Trends in Analytical Chemistry, 2018, 103: 1-20. doi: 10.1016/j.trac.2018.03.004
[3] EPSTEIN L. Fifty years since silent spring [J]. Annual Review of Phytopathology, 2014, 52(1): 377-402. doi: 10.1146/annurev-phyto-102313-045900
[4] SAPBAMRER F, RATANA H. Pesticide Use, poisoning, and knowledge and unsafe occupational practices in Thailand [J]. New Solut, 2018, 28(2): 283-302. doi: 10.1177/1048291118759311
[5] 王静. 有机氯农药残留的危害及改善措施 [J]. 湖南农业, 2020(8): 36. doi: 10.3969/j.issn.1005-362X.2020.08.038 WANG J. Harm of organochlorine pesticide residue and improvement measures [J]. Hunan Agriculture, 2020(8): 36(in Chinese). doi: 10.3969/j.issn.1005-362X.2020.08.038
[6] 贾玉玲, 蔡强, 彭惠民, 等. 乙酰胆碱酯酶和发光菌检测有机磷农药毒性研究 [J]. 环境科学, 2011, 32(6): 1820-1824. JIA Y L, CAI Q, PENG H M, et al. Detection of the toxicity of organophosphorus pesticide with acetylcholinesterase and luminescent bacterium [J]. Environmental Science, 2011, 32(6): 1820-1824(in Chinese).
[7] 华小梅, 江希流. 我国农药环境污染与危害的特点及控制对策 [J]. 环境科学研究, 2000, 13(3): 40-43. doi: 10.3321/j.issn:1001-6929.2000.03.012 HUA X M, JIANG X L. Characteristics and control countermeasures of pesticide pollution and its damage on environment in China [J]. Research of Environmental Science , 2000, 13(3): 40-43(in Chinese). doi: 10.3321/j.issn:1001-6929.2000.03.012
[8] HUANG J, HOU C J, LEI J C, et al. A novel device based on a fluorescent cross-responsive sensor array for detecting pesticide residue [J]. Measurement Science & Technology, 2016, 27(11): 115104.
[9] YANG L, LIU L Y, LIU C G, et al. Two luminescent dye@MOFs systems as dual-emitting platforms for efficient pesticides detection [J]. Journal of Hazardous Materials, 2020, 381(5): 120966.
[10] 张鹏, 张有明, 林奇, 等. 金属离子响应型荧光传感分子的设计原理及研究进展 [J]. 有机化学, 2014, 34(7): 1300-1321. ZHANG P, ZHANG Y M, LIN Q, et al. Principle and the research progress of metal ion responsive fluorescent chemosensors for cations recognition [J]. Chinese Journal of Organic Chemistry, 2014, 34(7): 1300-1321(in Chinese).
[11] HU T, HU J, YE Y, et al. Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor. [J]. Biosensors & Bioelectronics, 2019, 136: 112-117.
[12] KAZEMIFARD N, ENSAFI A A, REZAEI B. Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices[J]. Food Chemistry, 2020, 310(4): 125812.
[13] ANZENBACHER P, PŘEMYSL L, PAVEL B, et al. A practical approach to optical cross-reactive sensor arrays [J]. Chemical Society Reviews, 2010, 39(10): 3954-3979. doi: 10.1039/b926220m
[14] 黄丽娟, 张欣, 张卓勇, 等. 基于纳米金显色反应的阵列传感器结合化学计量学检测重金属离子 [J]. 光谱学与光谱分析, 2018, 38(S1): 361-362. HUANG L J, ZHANG X, ZHANG Z Y, et al. Sensor array for qualitative and quantitative analysis of metal ions and metal oxyanion based on colorimetric and chemometrics [J]. Spectroscopy and Spectral Analysis, 2018, 38(S1): 361-362(in Chinese).
[15] DICKINSON T. A. , WHITE J, KAUER J. S, et al. A chemeical-detedting system based on a cross-reactive optical sensor array[J]. Nature, 1996, 382 (6593), 697-700.
[16] FOLMER J F, KITAMURA M, ANSLYN E V, et al. Pattern-based discrimination of enantiomeric and structurally similar amino acids: an optical mimic of the mammalian taste response [J]. Journal of the American Chemical Society, 2006, 128(17): 5652-5653. doi: 10.1021/ja061313i
[17] IJAZ G, SHEERAZ M, SAQLAN M, et al. Polyphenol oxidase (PPO) based biosensors for detection of phenolic compounds: A review [J]. Journal of Applied Biology & Biotechnology, 2017, 5(3): 72-85.
[18] POTYRAILO R A, LEACH A M , et al. Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition[J]. Applied Physics Letters, 2006, 88(13): 338-315.
[19] CHEN L F,LI L,WU D, et al. Construction of multi-channel fluorescence sensor array and its application for accurate identification and sensitive quantification of multiple metal ions [J]. Sensors and Actuators B:Chemical, 2020, 303: 127277. doi: 10.1016/j.snb.2019.127277
[20] THOMAS W, JOLY G D,SWAGER T M. Chemical sensors based on amplifying fluorescent conjugated polymers. [J]. Chemical Reviews, 2007, 107(4): 1339-1386. doi: 10.1021/cr0501339
[21] TIAN J, WANG H F, YAN X P, et al. Discrimination of saccharides with a fluorescent molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica. [J]. Analytical Chemistry, 2009, 81(13): 5273-5280. doi: 10.1021/ac900484x
[22] 孙嫚. 碳量子点构建传感器阵列用于胺和咪唑类化合物的检测[D]. 沈阳: 辽宁大学, 2019. SUN M. Construction of carbon-based quantum dot sensor arrays for the detection of amines and imidazoles [D]. Shenyang : Liaoning University, 2019(in Chinese).
[23] 龙亿涛, 樊春海. 纳米传感器 [J]. 化学学报, 2017, 75(11): 1021-1022. LONG Y T, FAN C H. Nanosensor [J]. Chinese Journal of Chemistry, 2017, 75(11): 1021-1022(in Chinese).
[24] ZHANG H Y, WANG Y, XIAO S, et al. Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots [J]. Biosensors and Bioelectronics, 2017, 87: 46-52. doi: 10.1016/j.bios.2016.08.010
[25] BURYAK A, ZAUBITZER F, POZDNOUKHOV A, et al. Indicator displacement assays as molecular timers [J]. Journal of the American Chemical Society, 2008, 130(34): 11260-11261. doi: 10.1021/ja8037118
[26] PHILLIPS R L, MIRANDA O R,YOU C C et al. Rapid and efficient identification of bacteria using gold-nanoparticle-poly (Para-phenyleneethynylene) constructs [J]. Angewandte Chemie International Edition, 2008, 47(14): 2590-2594. doi: 10.1002/anie.200703369
[27] WU Y P, LIU X, WU Q H, et al. Differentiation and determination of metal ions using fluorescent sensor array based on carbon nanodots [J]. Sensors and Actuators B:Chemical, 2017, 246: 680-685. doi: 10.1016/j.snb.2017.02.132
[28] ASKIM J R, MAHMOUDI M, SUSLICK K S. Optical sensor arrays for chemical sensing: The optoelectronic nose [J]. Chemical Society Reviews, 2013, 42(22): 8649-8682. doi: 10.1039/c3cs60179j
[29] ZU F L, YAN F Y, BAI Z J, et al. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications [J]. Microchimica Acta, 2017, 184(7): 1899-1914. doi: 10.1007/s00604-017-2318-9
[30] BARATI A, SHAMSIPUR M, ABDOLLAHI H. Metal-ion-mediated fluorescent carbon dots for indirect detection of sulfide ions [J]. Sensors & Actuators B: Chemical, 2016, 230: 289-297.
[31] JING W J, LU Y X, YANG G C, et al. Fluorescence sensor array based on amino acids-modulating quantum dots for the discrimination of metal ions. [J]. Analytica Chimica Acta, 2017, 985: 175-182. doi: 10.1016/j.aca.2017.07.011
[32] BURYAK A, POZDNOUKHOV A, SEVERIN K, et al. Pattern-based sensing of nucleotides in aqueous solution with a multicomponent indicator displacement assay [J]. Chemical Communications (Cambridge, England), 2007, 23: 2366-2368.
[33] ROCHAT S, GAO J,QIAN X H, et al. Cross-reactive sensor arrays for the detection of peptides in aqueous solution by fluorescence spectroscopy [J]. Chemistry, 2010, 16(1): 104-113. doi: 10.1002/chem.200902202
[34] WU Y P, LIU X, WU Q H, et al. Carbon nanodots-based fluorescent turn-on sensor array for biothiols. [J]. Analytical Chemistry, 2017, 89(13): 7084-7089. doi: 10.1021/acs.analchem.7b00956
[35] XU Z J, WANG Z K, LIU M Y, et al. Machine learning assisted dual-channel carbon quantum dots-based fluorescence sensor array for detection of tetracyclines [J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2020, 232: 118147. doi: 10.1016/j.saa.2020.118147
[36] PAU C P, PATONAY G, MOSS C W, et al. A rapid enzymatic procedure for “fingerprinting” bacteria by using pattern recognition of two-dimensional fluorescence data. [J]. Clinical Chemistry, 1986, 32(6): 987-991. doi: 10.1093/clinchem/32.6.987
[37] WANG Z, XU C, LU Y X, et al. Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions [J]. Sensors and Actuators B Chemical, 2016, 241: 1324-1330.
[38] SUN S, JIANG K, QIAN S H, et al. Applying carbon dots-metal ions ensembles as a multichannel fluorescent sensor array: detection and discrimination of phosphate anions [J]. Analytical Chemistry, 2017, 89(10): 5542-5548. doi: 10.1021/acs.analchem.7b00602
[39] XIN Y, KONG L S, LIU Z, et al. Machine learning and deep learning methods for cybersecurity [J]. IEEE Access, 2018, 6: 35365-35381. doi: 10.1109/ACCESS.2018.2836950
[40] ABDI H, WILLIAMS L J, et al. Principal component analysis [J]. Wiley Interdiplinary Reviews: Computational Statistics, 2010, 2(4): 433-459. doi: 10.1002/wics.101
[41] YU H,YANG J. A direct LDA algorithm for high-dimensional data — with application to face recognition [J]. Pattern Recognition, 2001, 34(10): 2067-2070. doi: 10.1016/S0031-3203(00)00162-X
[42] LI L L, ZHAO X, TSENG M L, et al. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm [J]. Journal of Cleaner Production, 2020, 242(1): 118447.1-118447.12.
[43] RAMANATHAN M, SIMONIAN A L, et al. Array biosensor based on enzyme kinetics monitoring by fluorescence spectroscopy: Application for neurotoxins detection [J]. Biosensors & Bioelectronics, 2007, 22(12): 3001-3007.
[44] ZHANG B, LI B, WANG Z G, et al. Creation of carbazole-based fluorescent porous polymers for recognition and detection of various pesticides in water [J]. ACS Sensors, 2020, 5(1): 162-170. doi: 10.1021/acssensors.9b01954
[45] 邵彩云, 杨华勇, 杜毅, 等. 金属有机框架材料用于去除环境污染物研究进展 [J]. 化学研究, 2019, 30(5): 537-546. SHAO C Y, YANG H Y, DU Y, et al. Recent study on the application of metal-organic frameworks materials in the removal of environmental pollutants [J]. Chemical Research, 2019, 30(5): 537-546(in Chinese).
[46] FAN Y, LIU L, SUN D L, et al. “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides [J]. Analytica Chimica Acta, 2016, 916: 84-91. doi: 10.1016/j.aca.2016.02.021
[47] GAO L F, JU L, CUI H, et al. Chemiluminescent and fluorescent dual-signal graphene quantum dots and their application in pesticide sensing arrays [J]. Journal of Materials Chemistry, 2017, 5(31): 7753-7758.
[48] CARNEIRO S V, QUEIROZ V H R, CRUZ A A C, et al. Sensing strategy based on Carbon Quantum Dots obtained from riboflavin for the identification of pesticides [J]. Sensors and Actuators B:Chemical, 2019, 301: 127149. doi: 10.1016/j.snb.2019.127149
[49] 杨清如, 李琳, 刘续威, 等. 新鲜果蔬有机磷农药快速检测技术研究进展 [J]. 当代化工, 2019, 48(12): 2919-2924. YANG Q R, LI L, LIU X W, et al. Research progress in the rapid detection technology of organophosphorus pesticides in fresh fruits and vegetables [J]. Contemporary Chemical Industry, 2019, 48(12): 2919-2924(in Chinese).
[50] SILLETTI S, RODIO G, PEZZOTT G,et al. An optical biosensor based on a multiarray of enzymes for monitoring a large set of chemical classes in milk [J]. Sensors and Actuators B: Chemical, 2015, 215: 607-617. doi: 10.1016/j.snb.2015.03.092
[51] SCOGNAMIGLIO V, PEZZOTTI I, PEZZOTTI G, et al. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals [J]. Analytica Chimica Acta, 2012, 751: 161-170. doi: 10.1016/j.aca.2012.09.010
[52] LIU Y L, BONIZZONI M. A supramolecular sensing array for qualitative and quantitative analysis of organophosphates in water [J]. Journal of the American Chemical Society, 2014, 136(40): 14223-14229. doi: 10.1021/ja507905r
[53] MINAMI T, LIU Y L, AKDENIZ A, et al. Intramolecular indicator displacement assay for anions: Supramolecular sensor for glyphosate [J]. Journal of the American Chemical Society, 2014, 136(32): 11396-11401. doi: 10.1021/ja504535q
[54] LIN B X, YU Y, LI R Y, et al. Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer [J]. Sensors and Actuators B:Chemical, 2016, 229: 100-109. doi: 10.1016/j.snb.2016.01.114