[1] CHEN D, KANNAN K, TAN H L, et al. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review [J]. Environmental Science & Technology, 2016, 50(11): 5438-5453.
[2] VANDENBERGL N, HAUSER R, MARCUS M, et al. Human exposure to bisphenol A (BPA) [J]. Reproductive Toxicology, 2007, 24(2): 139-177. doi: 10.1016/j.reprotox.2007.07.010
[3] 邓茂先, 吴德生, 詹立. 环境雌激素双酚A的生殖毒理研究 [J]. 环境与健康杂志, 2001, 18(3): 134-136,150. doi: 10.3969/j.issn.1001-5914.2001.03.002 DENG M X, WU D S, ZHAN L. Study on mechanism of reproduction toxicity of to estrogic Bisphenol-A related to environment [J]. Journal of Environment and Health, 2001, 18(3): 134-136,150(in Chinese). doi: 10.3969/j.issn.1001-5914.2001.03.002
[4] DU J K, BAO J G, LIU Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A [J]. Journal of Hazardous Materials, 2016, 320: 150-159. doi: 10.1016/j.jhazmat.2016.08.021
[5] LIANG C J, WANG Z, MOHANTY N, et al. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 ℃ [J]. Science of The Total Environment, 2006, 370(2): 271-277.
[6] GONG Y, ZHAO X, ZHANG H, et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation [J]. Applied Catalysis B-environmental, 2018, 233: 35-45. doi: 10.1016/j.apcatb.2018.03.077
[7] LI X N, WANG Z H, ZHANG B, et al. FexCo3-xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate [J]. Applied Catalysis B-environmental, 2016, 181(181): 788-799.
[8] JI Y F, FAN Y, LIU K, et al. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds [J]. Water Research, 2015, 87: 1-9. doi: 10.1016/j.watres.2015.09.005
[9] LIN Y T, LIANG C J, CHEN J H, et al. Feasibility study of ultraviolet activated persulfate oxidation of phenol [J]. Chemosphere, 2011, 82(8): 1168-1172. doi: 10.1016/j.chemosphere.2010.12.027
[10] LUO C W, MA J, JIANG J, et al. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5 and UV/S2O82− [J]. Water Research, 2015, 80: 99-108. doi: 10.1016/j.watres.2015.05.019
[11] HU L X, YANG X P, DANG S T, et al. An easily recyclable Co/SBA-15 catalyst: Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water [J]. Applied Catalysis B-environmental, 2011, 102(1): 19-26.
[12] ZOU J, MA J, CHEN L W, et al. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine [J]. Environmental Science & Technology, 2013, 47(20): 11685-11691.
[13] FAN J H, QIN H H, JIANG S M, et al. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen [J]. Chemical Engineering Journal, 2019, 359: 723-732. doi: 10.1016/j.cej.2018.11.165
[14] ZHANG J, SHAO X T, SHI C, et al. Decolorization of acid orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon [J]. Chemical Engineering Journal, 2013, 232: 259-265. doi: 10.1016/j.cej.2013.07.108
[15] CHEN J B, ZHANG L M, HUANG T Y, et al. Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: Radical versus non-radical mechanism [J]. Journal of Hazardous Materials, 2016, 320: 571-580. doi: 10.1016/j.jhazmat.2016.07.038
[16] WANG G, CHEN S, QUAN X, et al. Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants [J]. Carbon, 2017, 115: 730-739. doi: 10.1016/j.carbon.2017.01.060
[17] DUAN X G, SUN H Q, AO Z M, et al. Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation [J]. Carbon, 2016, 107: 371-378. doi: 10.1016/j.carbon.2016.06.016
[18] GAO Y W, ZHU Y, LYU L, et al. Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation [J]. Environmental Science & Technology, 2018, 52(24): 14371-14380.
[19] LIN K A, ZHANG Z. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst [J]. Chemical Engineering Journal, 2017, 313: 1320-1327. doi: 10.1016/j.cej.2016.11.025
[20] WANG S Z, XU L J, WANG J L, et al. Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole [J]. Chemical Engineering Journal, 2019, 375: 122041. doi: 10.1016/j.cej.2019.122041
[21] QU L T, LIU Y, BAEK J, et al. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells [J]. ACS Nano, 2010, 4(3): 1321-1326. doi: 10.1021/nn901850u
[22] PARAKNOWTTSCH J P, THOMAS A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications [J]. Energy and Environmental Science, 2013, 6(10): 2839-2855. doi: 10.1039/c3ee41444b
[23] XUE W L, CAO S H, LIU R, et al. Preparation of nitrogen-containing carbon using a one-step thermal polymerization method for activation of peroxymonosulfate to degrade bisphenol A [J]. Chemosphere, 2020, 248: 126053. doi: 10.1016/j.chemosphere.2020.126053
[24] HO W K, ZHANG Z Z, LIN W, et al. Copolymerization with 2, 4, 6-Triaminopyrimidine for the Rolling-up the Layer Structure, Tunable Electronic Properties, and Photocatalysis of g-C3N4 [J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5497-5505.
[25] ZHAO Y H, LIU M X, DENG X X, et al. Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode [J]. Electrochimica Acta, 2015, 153(153): 448-455.
[26] CHIDHAMBARAM N, RAVICHANDRAN K. Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications [J]. Materials Letters, 2017, 207: 44-48. doi: 10.1016/j.matlet.2017.07.040
[27] CHEN H, YAO J H, QIU P X, et al. Facile surfactant assistant synthesis of porous oxygen-doped graphitic carbon nitride nanosheets with enhanced visible light photocatalytic activity [J]. Materials Research Bulletin, 2017, 91: 42-48. doi: 10.1016/j.materresbull.2017.02.042
[28] GU J Y, CHEN H, JIANG F, et al. Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride [J]. Journal of Colloid and Interface Science, 2019, 540: 97-106. doi: 10.1016/j.jcis.2019.01.023
[29] QIU P X, CHEN H, JIANG F, et al. Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity [J]. RSC Advances, 2014, 4(75): 39969-39977. doi: 10.1039/C4RA06451H
[30] DONG G H, YANG L P, WANG F, et al. Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides [J]. ACS Catalysis, 2016, 6(10): 6511-6519. doi: 10.1021/acscatal.6b01657
[31] QIU P X, XU C M, CHEN H, et al. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity [J]. Applied Catalysis B-environmental, 2017, 206: 319-327. doi: 10.1016/j.apcatb.2017.01.058
[32] CAO S H, ZHOU N, GAO F H, et al. All-solid-state Z-scheme 3, 4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation [J]. Applied Catalysis B-environmental, 2017, 218: 600-610. doi: 10.1016/j.apcatb.2017.07.013
[33] OH W, VEKSHA A, CHEN X, et al. Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation [J]. Chemical Engineering Journal, 2019, 374: 947-957. doi: 10.1016/j.cej.2019.06.001
[34] MA W J, WANG N, FAN Y N, et al. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate [J]. Chemical Engineering Journal, 2018, 336: 721-731. doi: 10.1016/j.cej.2017.11.164
[35] LIU C, CHEN L W, DING D H, et al. From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor [J]. Applied Catalysis B-environmental, 2019, 254: 312-320. doi: 10.1016/j.apcatb.2019.05.014
[36] LUO R, LIU C, LI J S, et al. Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate [J]. Journal of Hazardous Materials, 2017, 329: 92-101. doi: 10.1016/j.jhazmat.2017.01.032
[37] LUO R, LI M Q, WANG C H, et al. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition [J]. Water Research, 2019, 148: 416-424. doi: 10.1016/j.watres.2018.10.087
[38] HU L M, ZHANG G S, WANG Q, et al. Facile synthesis of novel Co3O4-Bi2O3 catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation [J]. Chemical Engineering Journal, 2017, 326: 1095-1104. doi: 10.1016/j.cej.2017.05.168
[39] WANG Y B, LIU M, ZHAO X, et al. Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon [J]. Carbon, 2018, 135: 238-247. doi: 10.1016/j.carbon.2018.01.106
[40] BOKARE A D, CHOI W Y. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
[41] PAN X X, CHEN J, WU N N, et al. Degradation of aqueous 2, 4, 4'-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products [J]. Water Research, 2018, 143: 176-187. doi: 10.1016/j.watres.2018.06.038
[42] REN W J, GAO J K, LEI C, et al. Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants [J]. Chemical Engineering Journal, 2018, 349: 766-774. doi: 10.1016/j.cej.2018.05.143
[43] YIN R L, GUO W Q, WANG H Z, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism [J]. Chemical Engineering Journal, 2019, 357: 589-599. doi: 10.1016/j.cej.2018.09.184
[44] HU W R, TONG W H, LI Y L, et al. Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate[J]. Journal of Hazardous Materials, 388.
[45] HOU J F, YANG S S, WAN H Q, et al. Highly effective catalytic peroxymonosulfate activation on N-doped mesoporous carbon for o -phenylphenol degradation [J]. Chemosphere, 2018, 197: 485-493. doi: 10.1016/j.chemosphere.2018.01.031
[46] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals [J]. Water Research, 2013, 47(14): 5431-5438. doi: 10.1016/j.watres.2013.06.023
[47] REN W, NIE G, ZHOU P, et al. The Intrinsic Nature of Persulfate Activation and N-Doping in Carbocatalysis [J]. Environmental Science and Technology, 2020, 54(10): 6438-6447. doi: 10.1021/acs.est.0c01161
[48] WANG N, MA W J, REN Z Q, et al. Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants [J]. Journal of Materials Chemistry, 2018, 6(3): 884-895. doi: 10.1039/C7TA08472B
[49] CHEN X, OH W D, HU Z T, et al. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes[J]. Applied Catalysis B: Environmental, 2018, 225: 243-257.