[1] GUO X, WANG J L. The chemical behaviors of microplastics in marine environment : A review [J]. Marine pollution bulletin, 2019, 142: 1-14. doi: 10.1016/j.marpolbul.2019.03.019
[2] LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China [J]. Environmental Pollution, 2018, 242: 855-862. doi: 10.1016/j.envpol.2018.07.051
[3] BAI Y C, ZANG C Y, GU M J, et al. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils [J]. Science of the Total Environment, 2017, 578: 47-55. doi: 10.1016/j.scitotenv.2016.06.083
[4] URBANIAK M, WYRWICKA A, TOLOCZKO W, et al. The effect of sewage sludge application on soil properties and willow ( Salix sp. ) cultivation [J]. Science of the Total Environment, 2017, 586: 66-75. doi: 10.1016/j.scitotenv.2017.02.012
[5] ROCHMAN C M, HOH E, HENTSCHEL B T, et al. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris [J]. Environmental Science & Technology, 2013, 47(3): 1646-1654.
[6] 张哿, 邹亚丹, 徐擎擎, 等. 微塑料与水中污染物的联合作用研究进展 [J]. 海洋湖沼通报, 2019(2): 59-69. ZHANG G, ZOU Y D, XU Q Q, et al. Proceedings of joint effect of microplastics and pollutants in water [J]. Transactions of Oceanology and Limnology, 2019(2): 59-69(in Chinese).
[7] WANG F, SHIH K M, LI X Y. Chemosphere The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide ( FOSA ) on microplastics [J]. Chemosphere, 2015, 119: 841-847. doi: 10.1016/j.chemosphere.2014.08.047
[8] WANG J, LIU X H, LI Y, et al. Microplastics as contaminants in the soil environment: A mini-review [J]. Science of The Total Environment, 2019, 691: 848-857. doi: 10.1016/j.scitotenv.2019.07.209
[9] HIRAI H, TAKADA H, OGATA Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches [J]. Marine Pollution Bulletin, 2011, 62(8): 1683-1692. doi: 10.1016/j.marpolbul.2011.06.004
[10] YEO B G, TAKADA H, YAMASHITA R, et al. PCBs and PBDEs in microplastic particles and zooplankton in open water in the Pacific Ocean and around the coast of Japan [J]. Marine Pollution Bulletin, 2020, 151: 110806. doi: 10.1016/j.marpolbul.2019.110806
[11] ANTUNES J C, FRIAS J G L, MICAELO A C, et al. Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants [J]. Estuarine, Coastal and Shelf Science, 2013, 130: 62-69. doi: 10.1016/j.ecss.2013.06.016
[12] CAMACHO M, HERRERA A, GÓMEZ M, et al. Organic pollutants in marine plastic debris from Canary Islands beaches [J]. Science of the Total Environment, 2019, 662: 22-31. doi: 10.1016/j.scitotenv.2018.12.422
[13] KARAPANAGIOTI H K, ENDO S, OGATA Y, et al. Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece [J]. Marine Pollution Bulletin, 2011, 62(2): 312-317. doi: 10.1016/j.marpolbul.2010.10.009
[14] RYAN P G, BOUWMAN H, MOLONEY C L, et al. Long-term decreases in persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets [J]. Marine Pollution Bulletin, 2012, 64(12): 2756-2760. doi: 10.1016/j.marpolbul.2012.09.013
[15] VERLA A W, ENYOH C E, VERLA E N, et al. Microplastic–toxic chemical interaction: A review study on quantified levels, mechanism and implication [J]. SN Applied Sciences, 2019, 1(11): 1-30. doi: 10.1007/s42452-019-1352-0
[16] WANG J, LIU X H, LIU G N, et al. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene [J]. Ecotoxicology and Environmental Safety, 2019, 173: 331-338. doi: 10.1016/j.ecoenv.2019.02.037
[17] WANG Z, CHEN M L, ZHANG L W, et al. Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China [J]. Science of the Total Environment, 2018, 628/629: 1617-1626.
[18] GONG W W, JIANG M Y, HAN P, et al. Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics [J]. Environmental Pollution, 2019, 254: 112927. doi: 10.1016/j.envpol.2019.07.095
[19] ZHAN Z W, WANG J D, PENG J P, et al. Sorption of 3, 3′, 4, 4′-tetrachlorobiphenyl by microplastics: A case study of polypropylene [J]. Marine Pollution Bulletin, 2016, 110(1): 559-563. doi: 10.1016/j.marpolbul.2016.05.036
[20] XU B L, LIU F, BROOKES P C, et al. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics [J]. Marine Pollution Bulletin, 2018, 131: 191-196. doi: 10.1016/j.marpolbul.2018.04.027
[21] ZHANG X J, ZHENG M G, WANG L, et al. Sorption of three synthetic musks by microplastics [J]. Marine Pollution Bulletin, 2018, 126: 606-609. doi: 10.1016/j.marpolbul.2017.09.025
[22] ZHANG X J, ZHENG M G, YIN X C, et al. Sorption of 3, 6-dibromocarbazole and 1, 3, 6, 8-tetrabromocarbazole by microplastics [J]. Marine Pollution Bulletin, 2019, 138: 458-463. doi: 10.1016/j.marpolbul.2018.11.055
[23] BROWNE M A, NIVEN S J, GALLOWAY T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity [J]. Current Biology, 2013, 23(23): 2388-2392. doi: 10.1016/j.cub.2013.10.012
[24] MA Y N, HUANG A N, CAO S Q, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water [J]. Environmental Pollution, 2016, 219: 166-173. doi: 10.1016/j.envpol.2016.10.061
[25] AVIO C G, GORBI S, MILAN M, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels [J]. Environmental Pollution, 2015, 198: 211-222. doi: 10.1016/j.envpol.2014.12.021
[26] BELLAS J, GIL I. Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa [J]. Environmental Pollution, 2020, 260: 114059. doi: 10.1016/j.envpol.2020.114059
[27] ZHU Z L, WANG S C, ZHAO F F, et al. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum [J]. Environmental Pollution, 2019, 246: 509-517. doi: 10.1016/j.envpol.2018.12.044
[28] CHEN Q Q, GUNDLACH M, YANG S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity [J]. Science of the total environment, 2017, 584: 1022-1031.
[29] SLEIGHT V A, BAKIR A, THOMPSON R C, et al. Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish [J]. Marine Pollution Bulletin, 2017, 116(1/2): 291-297.
[30] WANG J, COFFIN S, SUN C L, et al. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil [J]. Environmental Pollution, 2019, 249: 776-784. doi: 10.1016/j.envpol.2019.03.102
[31] van A, ROCHMAN C M, FLORES E M, et al. Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California [J]. Chemosphere, 2012, 86(3): 258-263. doi: 10.1016/j.chemosphere.2011.09.039
[32] FISNER M, TANIGUCHI S, MOREIRA F, et al. Polycyclic aromatic hydrocarbons (PAHs) in plastic pellets: Variability in the concentration and composition at different sediment depths in a sandy beach [J]. Marine Pollution Bulletin, 2013, 70(1/2): 219-226.
[33] HOSODA J, OFOSU-ANIM J, SABI E B, et al. Monitoring of organic micropollutants in Ghana by combination of pellet watch with sediment analysis: E-waste as a source of PCBs [J]. Marine Pollution Bulletin, 2014, 86(1/2): 575-581.
[34] TANIGUCHI S, COLABUONO F I, DIAS P S, et al. Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil [J]. Marine pollution bulletin, 2016, 106(1/2): 87-94.
[35] GORMAN D, MOREIRA F T, TURRA A, et al. Organic contamination of beached plastic pellets in the South Atlantic: Risk assessments can benefit by considering spatial gradients [J]. Chemosphere, 2019, 223: 608-615. doi: 10.1016/j.chemosphere.2019.02.094
[36] GAUQUIE J, DEVRIESE L, ROBBENS J, et al. A qualitative screening and quantitative measurement of organic contaminants on different types of marine plastic debris [J]. Chemosphere, 2015, 138: 348-356. doi: 10.1016/j.chemosphere.2015.06.029
[37] ZHANG H B, ZHOU Q, XIE Z Y, et al. Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in North China [J]. Science of the Total Environment, 2018, 616/617: 1505-1512.
[38] TANG G W, LIU M Y, ZHOU Q, et al. Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts [J]. Science of the Total Environment, 2018, 634: 811-820. doi: 10.1016/j.scitotenv.2018.03.336
[39] ZHANG W W, MA X D, ZHANG Z F, et al. Persistent organic pollutants carried on plastic resin pellets from two beaches in China [J]. Marine Pollution Bulletin, 2015, 99(1/2): 28-34.
[40] GAO F L, LI J X, SUN C J, et al. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment [J]. Marine Pollution Bulletin, 2019, 144: 61-67. doi: 10.1016/j.marpolbul.2019.04.039
[41] SHI J C, SANGANYADO E, WANG L S, et al. Organic pollutants in sedimentary microplastics from eastern Guangdong: Spatial distribution and source identification [J]. Ecotoxicology and Environmental Safety, 2020, 193: 110356. doi: 10.1016/j.ecoenv.2020.110356
[42] LO H S, WONG C Y, TAM N F Y, et al. Spatial distribution and source identification of hydrophobic organic compounds (HOCs) on sedimentary microplastic in Hong Kong [J]. Chemosphere, 2019, 219: 418-426. doi: 10.1016/j.chemosphere.2018.12.032
[43] TAN X L, YU X B, CAI L Q, et al. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China [J]. Chemosphere, 2019, 221: 834-840. doi: 10.1016/j.chemosphere.2019.01.022
[44] FRASER M A, CHEN L, ASHAR M, et al. Occurrence and distribution of microplastics and polychlorinated biphenyls in sediments from the Qiantang River and Hangzhou Bay, China [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110536. doi: 10.1016/j.ecoenv.2020.110536
[45] LU X M, LU P Z, LIU X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil [J]. Science of The Total Environment, 2020, 709: 136276. doi: 10.1016/j.scitotenv.2019.136276
[46] WU X W, LIU P, HUANG H, et al. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations [J]. Science of The Total Environment, 2020, 717: 137033. doi: 10.1016/j.scitotenv.2020.137033
[47] LIU X W, ZHENG M G, WANG L, et al. Sorption behaviors of tris-(2, 3-dibromopropyl) isocyanurate and hexabromocyclododecanes on polypropylene microplastics [J]. Marine Pollution Bulletin, 2018, 135: 581-586. doi: 10.1016/j.marpolbul.2018.07.061
[48] CHEN S P, TAN Z R, QI Y S, et al. Sorption of tri-n-butyl phosphate and tris (2-chloroethyl) phosphate on polyethylene and polyvinyl chloride microplastics in seawater [J]. Marine Pollution Bulletin, 2019, 149: 110490. doi: 10.1016/j.marpolbul.2019.110490
[49] WANG W F, WANG J. Comparative evaluation of sorption kinetics and isotherms of Pyrene onto microplastics [J]. Chemosphere, 2018, 193: 567-573. doi: 10.1016/j.chemosphere.2017.11.078
[50] ZHANG J H, CHEN H B, HE H, et al. Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions [J]. Chemosphere, 2020, 245: 125628. doi: 10.1016/j.chemosphere.2019.125628
[51] WU P F, CAI Z W, JIN H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics [J]. Science of the Total Environment, 2019, 650: 671-678. doi: 10.1016/j.scitotenv.2018.09.049
[52] XU P C, GE W, CHAI C, et al. Sorption of polybrominated diphenyl ethers by microplastics [J]. Marine Pollution Bulletin, 2019, 145: 260-269. doi: 10.1016/j.marpolbul.2019.05.050
[53] HU J Q, YANG S Z, GUO L, et al. Microscopic investigation on the adsorption of lubrication oil on microplastics [J]. Journal of Molecular Liquids, 2017, 227: 351-355. doi: 10.1016/j.molliq.2016.12.043
[54] GUO X T, PANG J W, CHEN S Y,et al. Sorption properties of tylosin on four different microplastics [J]. Chemosphere, 2018, 136: 240-245.
[55] GUO X T, PANG J W, CHEN S Y, et al. Sorption properties of tylosin on four different microplastics [J]. Chemosphere, 2018, 209: 240-245. doi: 10.1016/j.chemosphere.2018.06.100
[56] GUO X, LIU Y, WANG J L. Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study [J]. Marine Pollution Bulletin, 2019, 145: 547-554. doi: 10.1016/j.marpolbul.2019.06.063
[57] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243: 1550-1557. doi: 10.1016/j.envpol.2018.09.122
[58] LI Y D, LI M, LI Z, et al. Effects of particle size and solution chemistry on triclosan sorption on polystyrene microplastic [J]. Chemosphere, 2019, 231: 308-314. doi: 10.1016/j.chemosphere.2019.05.116
[59] WANG W F, WANG J. Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment [J]. Ecotoxicology and Environmental Safety, 2018, 147: 648-655. doi: 10.1016/j.ecoenv.2017.09.029
[60] ELIZALDE-VELÁZQUEZ A, SUBBIAH S, ANDERSON T A, et al. Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics [J]. Science of The Total Environment, 2020, 715: 136974. doi: 10.1016/j.scitotenv.2020.136974
[61] WU C X, ZHANG K, HUANG X L, et al. Sorption of pharmaceuticals and personal care products to polyethylene debris [J]. Environmental Science and Pollution Research International, 2016, 23(9): 8819-8826. doi: 10.1007/s11356-016-6121-7
[62] LI J, ZHANG K N, ZHANG H. Adsorption of antibiotics on microplastics [J]. Environmental Pollution, 2018, 237: 460-467. doi: 10.1016/j.envpol.2018.02.050
[63] BAKIR A, ROWLAND S J, THOMPSON R C. Transport of persistent organic pollutants by microplastics in estuarine conditions [J]. Estuarine, Coastal and Shelf Science, 2014, 140: 14-21. doi: 10.1016/j.ecss.2014.01.004
[64] LIU X M, XU J, ZHAO Y P, et al. Hydrophobic sorption behaviors of 17β-estradiol on environmental microplastics [J]. Chemosphere, 2019, 226: 726-735. doi: 10.1016/j.chemosphere.2019.03.162
[65] XU B L, LIU F, BROOKES P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter [J]. Environmental Pollution, 2018, 240: 87-94. doi: 10.1016/j.envpol.2018.04.113
[66] 王一飞, 李淼, 于海瀛, 等. 微塑料对环境中有机污染物吸附解吸的研究进展 [J]. 生态毒理学报, 2019, 14(4): 23-30. WANG Y F, LI M, YU H Y, et al. Research progress on the adsorption and desorption between microplastics and environmental organic pollutants [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 23-30(in Chinese).
[67] QIU Y, ZHENG M G, WANG L, et al. Sorption of polyhalogenated carbazoles (PHCs) to microplastics [J]. Marine Pollution Bulletin, 2019, 146: 718-728. doi: 10.1016/j.marpolbul.2019.07.034
[68] GRANBY K, RAINIERI S, RASMUSSEN R R, et al. The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax) [J]. Environmental Research, 2018, 164: 430-443. doi: 10.1016/j.envres.2018.02.035
[69] WANG T, WANG L, CHEN Q Q, et al. Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport [J]. Science of The Total Environment, 2020, 748: 142427. doi: 10.1016/j.scitotenv.2020.142427
[70] CHEN Q Q, YIN D Q, JIA Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish [J]. Science of the Total Environment, 2017, 609: 1312-1321. doi: 10.1016/j.scitotenv.2017.07.144
[71] BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L. ) [J]. Environmental Science & Technology, 2013, 47(1): 593-600.
[72] TANG Y, RONG J H, GUAN X F, et al. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species [J]. Environmental Pollution, 2020, 258: 113845. doi: 10.1016/j.envpol.2019.113845
[73] LI Z C, YI X L, ZHOU H, CHI T, et al. Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa [J]. Environmental Pollution, 2020, 261: 113604.
[74] CHEN Q, GUNDLACH M, YANG S, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity [J]. Science of the Total Environment, 2017, 584/585: 1022-1031. doi: 10.1016/j.scitotenv.2017.01.156
[75] YANG W F, GAO X X, WU Y X, et al. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa [J]. Ecotoxicology and Environmental Safety, 2020, 195: 110484. doi: 10.1016/j.ecoenv.2020.110484
[76] ZHANG Q, QU Q, LU T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth [J]. Environmental Pollution, 2018, 243: 1106-1112. doi: 10.1016/j.envpol.2018.09.073