[1] CHEN G, SHAH K J, SHI L, et al. Red soil amelioration and heavy metal immobilization by a multi-element mineral amendment: Performance and mechanisms[J]. Environmental Pollution, 2019, 254: 112964. doi: 10.1016/j.envpol.2019.112964
[2] GUO Y K, MAO K, CAO H R, et al. Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice[J]. Environmental Pollution, 2021, 268: 115829. doi: 10.1016/j.envpol.2020.115829
[3] XU Y, LIANG X F, XU Y M, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review[J]. Pedosphere, 2017, 27(2): 193-204. doi: 10.1016/S1002-0160(17)60310-2
[4] ZHAO H, HUANG X, LIU F, et al. A two-year field study of using a new material for remediation of cadmium contaminated paddy soil[J]. Environmental Pollution, 2020, 263: 114614. doi: 10.1016/j.envpol.2020.114614
[5] 何舞, 王富华, 杜应琼, 等. 东莞市土壤重金属污染现状、污染来源及防治措施[J]. 广东农业科学, 2010, 37(4): 211-–213
[6] 曾晓舵, 王向琴, 凃新红, 等. 农田土壤重金属污染阻控技术研究进展[J]. 生态环境学报, 2019, 28(9): 1900-1906.
[7] ZHAO Y, LIU M, GUO L, et al. Influence of silicon on cadmium availability and cadmium uptake by rice in acid and alkaline paddy soils[J]. Journal of Soils and Sediments, 2020, 20(5): 2343-2353. doi: 10.1007/s11368-020-02597-0
[8] 鄢德梅, 郭朝晖, 黄凤莲, 等. 钙镁磷肥对石灰、海泡石组配修复镉污染稻田土壤的影响[J]. 环境科学, 2020, 41(3): 1491-1497.
[9] 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展: 修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4): 1140-1148. doi: 10.12030/j.cjee.202012051
[10] 韦小了, 牟力, 付天岭, 等. 不同钝化剂组合对水稻各部位吸收积累Cd及产量的影响[J]. 土壤学报, 2019, 56(4): 883-894. doi: 10.11766/trxb201810120516
[11] 郑荧辉, 熊仕娟, 徐卫红, 等. 纳米沸石对大白菜镉吸收及土壤有效镉含量的影响[J]. 农业环境科学学报, 2016, 35(12): 2353-2360. doi: 10.11654/jaes.2016-0717
[12] PEI P, SUN Y, WANG L, et al. In-situ stabilization of Cd by sepiolite co-applied with organic amendments in contaminated soils[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111600. doi: 10.1016/j.ecoenv.2020.111600
[13] 陆中桂, 黄占斌, 李昂, 等. 腐植酸对重金属铅镉的吸附特征[J]. 环境科学学报, 2018, 38(9): 3721-3729.
[14] DHIMAN J, PRASHER S O, ELSAYED E, et al. Heavy metal uptake by wastewater irrigated potato plants grown on contaminated soil treated with hydrogel based amendments[J]. Environmental Technology & Innovation, 2020, 19: 100952.
[15] WANG F, ZHANG W W, MIAO L J, et al. The effects of vermicompost and shell powder addition on Cd bioavailability, enzyme activity and bacterial community in Cd-contaminated soil: a field study [J]. Ecotoxicology and Environmental Safety, 2021, 215: 112163
[16] 索琳娜, 马杰, 刘宝存, 等. 土壤调理剂应用现状及施用风险研究[J]. 农业环境科学学报, 2021, 40(6): 1141-1149. doi: 10.11654/jaes.2021-0364
[17] LIANG X, HAN J, XU Y, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235: 9-18.
[18] ZHANG G X, GUO X F, ZHAO Z H, et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil[J]. Environmental Pollution, 2016, 218: 513-522. doi: 10.1016/j.envpol.2016.07.031
[19] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000
[20] 周嗣江, 刘针延, 熊双莲, 等. 同步钝化土壤Cd和As材料的筛选[J]. 环境科学, 2021, 42(7): 3527-3534.
[21] ZHANG G X, HE L X, GUO X F, et al. Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant[J]. Geoderma, 2020, 375: 114497. doi: 10.1016/j.geoderma.2020.114497
[22] HAMID Y, TANG L, HUSSAIN B, et al. Adsorption of Cd and Pb in contaminated gleysol by composite treatment of sepiolite, organic manure and lime in field and batch experiments[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110539. doi: 10.1016/j.ecoenv.2020.110539
[23] SHI M Q, MIN X B, KE Y, et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr) oxides[J]. Science of The Total Environment, 2021, 752: 141930. doi: 10.1016/j.scitotenv.2020.141930
[24] 张迪, 吴晓霞, 丁爱芳, 等. 生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响[J]. 环境化学, 2019, 38(11): 2526-2534.
[25] 王俊伟, 杜俊逸, 桂梦瑶, 等. 氧化环境中FeS修复重金属的稳定性变化与机制[J]. 环境科学学报, 2020, 40(2): 562-573.
[26] GONG H B, TAN Z X, HUANG K, et al. Mechanism of cadmium removal from soil by silicate composite biochar and its recycling[J]. Journal of Hazardous Materials, 2021, 409: 125022. doi: 10.1016/j.jhazmat.2020.125022
[27] MIAO J, GUO Z, WANG Y, et al. Application progress on adsorption of heavy metal ions using polyacrylamide composite materials[J]. Petrochemical Technology, 2017, 46(12): 1558-1565.
[28] 陈月芳, 彭焕玲, 侯荣荣, 等. 改性泥炭对Pb(II)和Cd(II)的单一及竞争吸附研究[J]. 应用化工, 2019, 48(2): 243-247. doi: 10.3969/j.issn.1671-3206.2019.02.001
[29] YANG K, MIAO G F, WU W H, et al. Sorption of Cu2+ on humic acids sequentially extracted from a sediment[J]. Chemosphere, 2015, 138: 657-663. doi: 10.1016/j.chemosphere.2015.07.061
[30] YU Y, YUAN S, WAN Y, et al. Effect of humic acid-based amendments on exchangeable cadmium and its accumulation by rice seedlings[J]. Environmental Progress & Sustainable Energy, 2017, 36(5): 1308-1313.
[31] 史磊, 郭朝晖, 彭驰, 等. 石灰组配土壤改良剂抑制污染农田水稻镉吸收[J]. 农业工程学报, 2018, 34(11): 209-216. doi: 10.11975/j.issn.1002-6819.2018.11.027
[32] WATSON C, SINGH Y, IQBAL T, et al. Short-term effects of polyacrylamide and dicyandiamide on C and N mineralization in a sandy loam soil[J]. Soil Use and Management, 2016, 32: 127-136.
[33] CAO X Y, HU P J, TAN C Y, et al. Effects of a natural sepiolite bearing material and lime on the immobilization and persistence of cadmium in a contaminated acid agricultural soil[J]. Environmental Science and Pollution Research, 2018, 25(22): 22075-22084. doi: 10.1007/s11356-018-1988-0
[34] HAO X, CHO C M, RACZ G J, et al. Chemical retardation of phosphate diffusion in an acid soil as affected by liming[J]. Nutrient Cycling in Agroecosystems, 2002, 64(3): 213-224. doi: 10.1023/A:1021470824083
[35] MAMEDOV A I, TSUNEKAWA A, HAREGEWEYN N, et al. Soil Structure Stability under Different Land Uses in Association with Polyacrylamide Effects[J]. Sustainability, 2021, 13(3): 1407. doi: 10.3390/su13031407
[36] PARADELO R, VIRTO I, CHENU C. Net effect of liming on soil organic carbon stocks: A review[J]. Agriculture Ecosystems & Environment, 2015, 202: 98-107.
[37] JIN S L, HU Z J, HUANG Y Z, et al. Evaluation of several phosphate amendments on rare earth element concentrations in rice plant and soil solution by X-ray diffraction[J]. Chemosphere, 2019, 236: 124322. doi: 10.1016/j.chemosphere.2019.07.053
[38] 中华人民共和国国家食品药品监督管理总局. 食品安全国家标准 食品中污染物限量: GB 2762–2017[S]. 北京: 中国标准出版社, 2017
[39] WU Y J, ZHOU H, ZOU Z J, et al. A three-year in-situ study on the persistence of a combined amendment (limestone plus sepiolite) for remedying paddy soil polluted with heavy metals[J]. Ecotoxicology and Environmental Safety, 2016, 130: 163-170. doi: 10.1016/j.ecoenv.2016.04.018
[40] HUANG Y, SHENG H, ZHOU P, et al. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming[J]. Ecotoxicology and Environmental Safety, 2019, 188: 109903.
[41] WEN T T, YANG L Y, DANG C Y, et al. Effect of basic oxygen furnace slag on succession of the bacterial community and immobilization of various metal ions in acidic contaminated mine soil[J]. Journal of Hazardous Materials, 2020, 388: 121784. doi: 10.1016/j.jhazmat.2019.121784
[42] AZARBAD H, NIKLINSKA M, LASKOWSKI R, et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients[J]. Fems Microbiology Ecology, 2015, 91(1): 1-11.
[43] ZHENG J F, CHEN J H, PAN G X, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of The Total Environment, 2016, 571: 206-217. doi: 10.1016/j.scitotenv.2016.07.135