[1] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-729.
[2] KÜMMERER K. Antibiotics in the aquatic environment - A review - Part I [J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086
[3] MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review [J]. Water Research, 2013, 47(3): 957-995. doi: 10.1016/j.watres.2012.11.027
[4] ZHU S C, CHEN H, LI J N. Sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan Lake Basin, Eastern China [J]. Ecotoxicology and Environmental Safety, 2013, 96: 154-159. doi: 10.1016/j.ecoenv.2013.06.033
[5] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[6] 刘鹏霄, 王旭, 冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展 [J]. 环境工程, 2020, 38(5): 36-42. LIU P X, WANG X, FENG L. Occurrences, resources and risk of antibiotics in aquatic environment: A review [J]. Environmental Engineering, 2020, 38(5): 36-42(in Chinese).
[7] PROIA L, LUPINI G, OSORIO V, et al. Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean River [J]. Chemosphere, 2013, 92(9): 1126-1135. doi: 10.1016/j.chemosphere.2013.01.063
[8] ZHU Y G, ZHAO Y, LI B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes [J]. Nature Microbiology, 2017, 2: 16270. doi: 10.1038/nmicrobiol.2016.270
[9] XU Y G, YU W T, MA Q, et al. The combined effect of sulfadiazine and copper on soil microbial activity and community structure [J]. Ecotoxicology and Environmental Safety, 2016, 134: 43-52. doi: 10.1016/j.ecoenv.2016.06.041
[10] YIN G Y, HOU L J, LIU M, et al. Effects of multiple antibiotics exposure on denitrification process in the Yangtze Estuary sediments [J]. Chemosphere, 2017, 171: 118-125. doi: 10.1016/j.chemosphere.2016.12.068
[11] WANG W H, WANG H, ZHANG W F, et al. Occurrence, distribution, and risk assessment of antibiotics in the Songhua River in China [J]. Environmental Science and Pollution Research International, 2017, 24(23): 19282-19292. doi: 10.1007/s11356-017-9471-x
[12] HE S N, DONG D M, ZHANG X, et al. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China) [J]. Environmental Science and Pollution Research International, 2018, 25(24): 24003-24012. doi: 10.1007/s11356-018-2459-3
[13] XU Y, GUO C S, LV J P, et al. Spatiotemporal profile of tetracycline and sulfonamide and their resistance on a catchment scale [J]. Environmental Pollution, 2018, 241: 1098-1105. doi: 10.1016/j.envpol.2018.06.050
[14] 张晓娇, 柏杨巍, 张远, 等. 辽河流域地表水中典型抗生素污染特征及生态风险评估 [J]. 环境科学, 2017, 38(11): 4553-4561. ZHANG X J, BAI Y W, ZHANG Y, et al. Occurrence, distribution, and ecological risk of antibiotics in surface water in the Liaohe River Basin, China [J]. Environmental Science, 2017, 38(11): 4553-4561(in Chinese).
[15] LEI K, ZHU Y, CHEN W, et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment [J]. Environment International, 2019, 130: 104919. doi: 10.1016/j.envint.2019.104919
[16] 张盼伟. 海河流域典型水体中PPCPs的环境行为及潜在风险研究[D]. 北京: 中国水利水电科学研究院, 2018. ZHANG P W. Environmental behavior and pollution characteristics of pharmaceuticals and personal care products, and their associated environmental risks in typical water-body from Haihe River Basin, China[D]. Beijing: China Institute of Water Resources and Hydropower Research (IWHR), 2018(in Chinese)
[17] ZHAO S N, LIU X H, CHENG D M, et al. Temporal-spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China [J]. Science of the Total Environment, 2016, 569/570: 1350-1358. doi: 10.1016/j.scitotenv.2016.06.216
[18] XU W H, ZHANG G, ZOU S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China [J]. Water Environment Research:a Research Publication of the Water Environment Federation, 2009, 81(3): 248-254. doi: 10.2175/106143008X325719
[19] 刘瀚阳. 典型抗生素在淮河流域(安徽段)水生生态系统中的分布特征、沉降趋势及其风险评估[D]. 芜湖: 安徽师范大学, 2020. LIU H Y. Occurrence, deposition trend and risk assessment of typical antibiotics in the aquatic environment of the Anhui section of Huaihe River Basin[D]. Wuhu: Anhui Normal University, 2020(in Chinese).
[20] ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in Lower Yangtze River, China [J]. Environmental Pollution, 2020, 257: 113365. doi: 10.1016/j.envpol.2019.113365
[21] WANG G G, ZHOU S H, HAN X K, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing City, southwest China [J]. Journal of Hazardous Materials, 2020, 389: 122110. doi: 10.1016/j.jhazmat.2020.122110
[22] LI S, SHI W Z, LI H M, et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River Estuary, South China [J]. Science of the Total Environment, 2018, 636: 1009-1019. doi: 10.1016/j.scitotenv.2018.04.358
[23] 周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险 [J]. 生态环境学报, 2017, 26(6): 1034-1041. ZHOU Z H, ZHAO J L, WEI X D, et al. Co-occurrence and ecological risk of antibiotics in surface water of Guangzhou section of Pearl River [J]. Ecology and Environmental Sciences, 2017, 26(6): 1034-1041(in Chinese).
[24] BAI Y W, MENG W, XU J, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China [J]. Environmental Science. Processes & Impacts, 2014, 16(3): 586-593.
[25] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China [J]. Environmental Pollution, 2011, 159(7): 1877-1885. doi: 10.1016/j.envpol.2011.03.034
[26] 张晶晶, 陈娟, 王沛芳, 等. 中国典型湖泊四大类抗生素污染特征 [J]. 中国环境科学, 2021, 41(9): 4271-4283. doi: 10.3969/j.issn.1000-6923.2021.09.034 ZHANG J J, CHEN J, WANG P F, et al. Pollution characteristics of four-type antibiotics in typical lakes in China [J]. China Environmental Science, 2021, 41(9): 4271-4283(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.09.034
[27] FIGUEROA R A, LEONARD A, MACKAY A A. Modeling tetracycline antibiotic sorption to clays [J]. Environmental Science & Technology, 2004, 38(2): 476-483.
[28] ZHANG J Q, DONG Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China [J]. Journal of Hazardous Materials, 2008, 151(2/3): 833-839.
[29] LI W H, SHI Y L, GAO L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China [J]. Chemosphere, 2012, 89(11): 1307-1315. doi: 10.1016/j.chemosphere.2012.05.079
[30] 陈宇, 许亚南, 庞燕. 抗生素赋存、来源及风险评估研究进展 [J]. 环境工程技术学报, 2021, 11(3): 562-570. doi: 10.12153/j.issn.1674-991X.20200180 CHEN Y, XU Y N, PANG Y. Advances in research on the occurrence, source and risk assessment of antibiotics [J]. Journal of Environmental Engineering Technology, 2021, 11(3): 562-570(in Chinese). doi: 10.12153/j.issn.1674-991X.20200180
[31] ZHOU L J, WU Q L, ZHANG B B, et al. Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China [J]. Environmental Science. Processes & Impacts, 2016, 18(4): 500-513.
[32] WANG W X, ZHOU L J, GU X H, et al. Occurrence and distribution of antibiotics in surface water impacted by crab culturing: A case study of Lake Guchenghu, China [J]. Environmental Science and Pollution Research International, 2018, 25(23): 22619-22628. doi: 10.1007/s11356-018-2054-7
[33] XU Z A, LI T, BI J, et al. Spatiotemporal heterogeneity of antibiotic pollution and ecological risk assessment in Taihu Lake Basin, China [J]. Science of the Total Environment, 2018, 643: 12-20. doi: 10.1016/j.scitotenv.2018.06.175
[34] 邓洋慧. 太湖流域典型新兴污染物污染特征及风险评价[D]. 南昌: 南昌大学, 2020. DENG Y H. Typical emerging pollution characteristics and risk assessment of Taihu Lake Basin[D]. Nanchang: Nanchang University, 2020 (in Chinese).
[35] TANG J, SHI T Z, WU X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment [J]. Chemosphere, 2015, 122: 154-161. doi: 10.1016/j.chemosphere.2014.11.032
[36] LI L, LIU D, ZHANG Q, et al. Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin [J]. Journal of Environmental Management, 2019, 249: 109396. doi: 10.1016/j.jenvman.2019.109396
[37] ZHOU Q Q, LIU G J, ARIF M, et al. Occurrence and risk assessment of antibiotics in the surface water of Chaohu Lake and its tributaries in China [J]. Science of the Total Environment, 2022, 807: 151040. doi: 10.1016/j.scitotenv.2021.151040
[38] LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. Science of the Total Environment, 2018, 627: 1195-1208. doi: 10.1016/j.scitotenv.2018.01.271
[39] WANG Y Q, LIU Y, LU S Y, et al. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period [J]. Environmental Science and Pollution Research International, 2019, 26(28): 28796-28807. doi: 10.1007/s11356-019-06047-4
[40] WANG Z, DU Y, YANG C, et al. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China [J]. Science of the Total Environment, 2017, 609: 1423-1432. doi: 10.1016/j.scitotenv.2017.08.009
[41] YANG L, WANG T Y, ZHOU Y Q, et al. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China [J]. Science of the Total Environment, 2021, 760: 144080. doi: 10.1016/j.scitotenv.2020.144080
[42] ZHANG G D, LIU X H, LU S Y, et al. Occurrence of typical antibiotics in Nansi Lake's inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2020, 242: 125269. doi: 10.1016/j.chemosphere.2019.125269
[43] 张慧, 郭文建, 刘绍丽, 等. 南四湖和东平湖表层水体中抗生素污染特征和风险评价 [J]. 环境化学, 2020, 39(12): 3279-3287. ZHANG H, GUO W J, LIU S L, et al. Contamination characteristics and risk assessment of antibiotics in surface water of Nansi Lake and Dongping Lake [J]. Environmental Chemistry, 2020, 39(12): 3279-3287(in Chinese).
[44] 童帮会. 淀山湖典型抗生素污染特征、来源及风险评价[D]. 上海: 华东师范大学, 2019. TONG B H. Pollution characteristics, sources and risk assessment of typical antibiotics in Dianshan Lake of Shanghai[D]. Shanghai: East China Normal University, 2019(in Chinese).
[45] XU J, ZHANG Y, ZHOU C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China [J]. Science of the Total Environment, 2014, 497/498: 267-273. doi: 10.1016/j.scitotenv.2014.07.114
[46] XIE Z X, LU G H, YAN Z H, et al. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake [J]. Environmental Pollution, 2017, 222: 356-366. doi: 10.1016/j.envpol.2016.12.026
[47] YAN Z H, YANG H H, DONG H K, et al. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion [J]. Environmental Pollution, 2018, 239: 223-232. doi: 10.1016/j.envpol.2018.04.023
[48] YANG Y Y, CAO X H, LIN H, et al. Antibiotics and antibiotic resistance genes in sediment of Honghu Lake and east Dongting Lake, China [J]. Microbial Ecology, 2016, 72(4): 791-801. doi: 10.1007/s00248-016-0814-9
[49] HAN M Z, DSOUZA M, ZHOU C Y, et al. Agricultural risk factors influence microbial ecology in Honghu Lake [J]. Genomics, Proteomics & Bioinformatics, 2019, 17(1): 76-90.
[50] CHENG D M, LIU X H, WANG L, et al. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China [J]. Science of the Total Environment, 2014, 476/477: 266-275. doi: 10.1016/j.scitotenv.2014.01.010
[51] ZHANG T, BAN X, WANG X L, et al. Analysis of nutrient transport and ecological response in Honghu Lake, China by using a mathematical model [J]. Science of the Total Environment, 2017, 575: 418-428. doi: 10.1016/j.scitotenv.2016.09.188
[52] SIEDLEWICZ G, BIAŁK-BIELIŃSKA A, BORECKA M, et al. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea—Summary of 3 years of studies [J]. Marine Pollution Bulletin, 2018, 129(2): 787-801. doi: 10.1016/j.marpolbul.2017.10.075
[53] VRYZAS Z, ALEXOUDIS C, VASSILIOU G, et al. Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece [J]. Ecotoxicology and Environmental Safety, 2011, 74(2): 174-181. doi: 10.1016/j.ecoenv.2010.04.011
[54] 王嘉玮. 渭河西安段表层水体中抗生素的分布特征及生态风险评价[D]. 西安: 西安理工大学, 2018. WANG J W. Distribution characteristics and ecological risk assessment of antibiotics in surface water of xi’an section of Weihe River[D]. Xi'an: Xi'an University of Technology, 2018(in Chinese).
[55] 刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价 [J]. 环境科学, 2019, 40(5): 2094-2100. LIU X, WANG Z, WANG X L, et al. Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments [J]. Environmental Science, 2019, 40(5): 2094-2100(in Chinese).
[56] 武旭跃, 邹华, 朱荣, 等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价 [J]. 环境科学, 2016, 37(12): 4596-4604. WU X Y, ZOU H, ZHU R, et al. Occurrence, distribution and ecological risk of aantibiotics in surface water of the gonghu bay, Taihu lake [J]. Environmental Science, 2016, 37(12): 4596-4604(in Chinese).
[57] 刘晓晖, 卢少勇. 大通湖表层水体中抗生素赋存特征与风险 [J]. 中国环境科学, 2018, 38(1): 320-329. doi: 10.3969/j.issn.1000-6923.2018.01.036 LIU X H, LU S Y. Occurrence and ecological risk of typical antibiotics in surface water of the Datong Lake, China [J]. China Environmental Science, 2018, 38(1): 320-329(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.01.036
[58] 陈宇, 许亚南, 项颂, 等. 骆马湖表层沉积物中PPCPs的赋存特征及生态风险评估 [J]. 环境科学研究, 2021, 34(8): 1835-1843. CHEN Y, XU Y N, XIANG S, et al. Characteristics and ecological risk assessment of PPCPs in surface sediments of Luoma Lake [J]. Research of Environmental Sciences, 2021, 34(8): 1835-1843(in Chinese).
[59] 张盼伟, 周怀东, 赵高峰, 等. 太湖表层沉积物中PPCPs的时空分布特征及潜在风险 [J]. 环境科学, 2016, 37(9): 3348-3355. ZHANG P W, ZHOU H D, ZHAO G F, et al. Spatial, temporal distribution characteristics and potential risk of PPCPs in surface sediments from Taihu Lake [J]. Environmental Science, 2016, 37(9): 3348-3355(in Chinese).
[60] HU Y, YAN X, SHEN Y, et al. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment [J]. Ecotoxicology and Environmental Safety, 2018, 157: 150-158. doi: 10.1016/j.ecoenv.2018.03.083
[61] 谢春生, 杨舒婷, 魏强, 等. 肇庆星湖抗生素污染特征分析及风险评价研究 [J]. 环境与健康杂志, 2019, 36(5): 427-431. XIE C S, YANG S T, WEI Q, et al. Antibiotic pollution characteristics and risk assessment of Xinghu Lake in Zhaoqing [J]. Journal of Environment and Health, 2019, 36(5): 427-431(in Chinese).
[62] 封丽, 程艳茹, 封雷, 等. 三峡库区主要水域典型抗生素分布及生态风险评估 [J]. 环境科学研究, 2017, 30(7): 1031-1040. FENG L, CHENG Y R, FENG L, et al. Distribution of typical antibiotics and ecological risk assessment in main waters of Three Gorges reservoir area [J]. Research of Environmental Sciences, 2017, 30(7): 1031-1040(in Chinese).
[63] DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects [J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406
[64] SUGA N, OGO M, SUZUKI S. Risk assessment of oxytetracycline in water phase to major sediment bacterial community: A water-sediment microcosm study [J]. Environmental Toxicology and Pharmacology, 2013, 36(1): 142-148. doi: 10.1016/j.etap.2013.03.013
[65] 方淑霞, 王大力, 朱丽华, 等. 抗生素对微生物的联合与低剂量毒性研究进展 [J]. 生态毒理学报, 2015, 10(2): 69-75. FANG S X, WANG D L, ZHU L H, et al. Progress in researches on toxicity of antibiotics in low dose and mixture exposure to microorganisms [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 69-75(in Chinese).
[66] XIONG W G, SUN Y X, ZHANG T, et al. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China [J]. Microbial Ecology, 2015, 70(2): 425-432. doi: 10.1007/s00248-015-0583-x
[67] 申立娜, 张璐璐, 秦珊, 等. 白洋淀喹诺酮类抗生素与微生物群落结构和多样性相关性研究 [J]. 环境科学学报, 2020, 40(2): 574-584. SHEN L N, ZHANG L L, QIN S, et al. The correlation between quinolone antibiotics and microbial community structure and diversity in Baiyangdian Lake [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 574-584(in Chinese).
[68] ZOU Y, LIN M X, XIONG W G, et al. Metagenomic insights into the effect of oxytetracycline on microbial structures, functions and functional genes in sediment denitrification [J]. Ecotoxicology and Environmental Safety, 2018, 161: 85-91. doi: 10.1016/j.ecoenv.2018.05.045
[69] MILAKOVIĆ M, VESTERGAARD G, GONZÁLEZ-PLAZA J J, et al. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments [J]. Environment International, 2019, 123: 501-511. doi: 10.1016/j.envint.2018.12.050
[70] ZHOU Z G, ZHANG Z Y, FENG L, et al. Adverse effects of levofloxacin and oxytetracycline on aquatic microbial communities [J]. Science of the Total Environment, 2020, 734: 139499. doi: 10.1016/j.scitotenv.2020.139499
[71] LUO Y, MAO D Q, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science & Technology, 2010, 44(19): 7220-7225.
[72] JIANG L, HU X L, XU T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China [J]. Science of the Total Environment, 2013, 458/459/460: 267-272.
[73] ZHAO B, XU J M, ZHANG G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2021, 262: 127741. doi: 10.1016/j.chemosphere.2020.127741
[74] 翟文超. 抗生素抗性基因在抗生素制药废水处理过程中的分布特征及控制原理研究[D]. 天津: 南开大学, 2014. ZHAI W C. The fate and control principle of antibiotic resistance genes in pharmaceutical wastewater treatment systems[D]. Tianjin: Nankai University, 2014(in Chinese).
[75] PU Q, FAN X T, SUN A Q, et al. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes [J]. Environment International, 2021, 152: 106453. doi: 10.1016/j.envint.2021.106453
[76] 韩雪, 马晓琳, 晁韶良, 等. 纳米材料对环境抗生素抗性基因污染扩散影响的研究进展 [J]. 生态毒理学报, 2019, 14(5): 46-54. HAN X, MA X L, CHAO S L, et al. Influence of nanomaterials on the spread of environmental antibiotic resistance genes: A review [J]. Asian Journal of Ecotoxicology, 2019, 14(5): 46-54(in Chinese).
[77] HUANG H N, CHEN Y G, ZHENG X, et al. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer [J]. Bioresource Technology, 2016, 218: 1284-1289. doi: 10.1016/j.biortech.2016.07.097
[78] NAGACHINTA S, CHEN J R. Transfer of class 1 integron-mediated antibiotic resistance genes from shiga toxin-producing Escherichia coli to a susceptible E. coli K-12 strain in storm water and bovine feces [J]. Applied and Environmental Microbiology, 2008, 74(16): 5063-5067. doi: 10.1128/AEM.00517-08
[79] WANG Q, MAO D Q, LUO Y. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4 [J]. Environmental Science & Technology, 2015, 49(14): 8731-8740.
[80] ZHANG Y, GU A Z, CEN T Y, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment [J]. Environmental Pollution, 2018, 237: 74-82. doi: 10.1016/j.envpol.2018.01.032
[81] ZHANG S, WANG Y, SONG H L, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera [J]. Environment International, 2019, 129: 478-487. doi: 10.1016/j.envint.2019.05.054
[82] JIA Y Q, WANG Z Q, FANG D, et al. Acetaminophen promotes horizontal transfer of plasmid-borne multiple antibiotic resistance genes [J]. Science of the Total Environment, 2021, 782: 146916. doi: 10.1016/j.scitotenv.2021.146916
[83] YAN C, DINH Q T, CHEVREUIL M, et al. The effect of environmental and therapeutic concentrations of antibiotics on nitrate reduction rates in river sediment [J]. Water Research, 2013, 47(11): 3654-3662. doi: 10.1016/j.watres.2013.04.025
[84] 张敏, 廖明军, 李大鹏, 等. 三种抗生素对池塘底泥氨氧化微生物生长及硝化作用的影响 [J]. 渔业现代化, 2013, 40(3): 25-30,36. doi: 10.3969/j.issn.1007-9580.2013.03.006 ZHANG M, LIAO M J, LI D P, et al. Effects of three kinds of antibiotic on the nitrification and the growth of ammonia-oxidizing microorganism in freshwater aquaculture pond sediment [J]. Fishery Modernization, 2013, 40(3): 25-30,36(in Chinese). doi: 10.3969/j.issn.1007-9580.2013.03.006
[85] HOU L J, YIN G Y, LIU M, et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments [J]. Environmental Science & Technology, 2015, 49(1): 326-333.
[86] XU H P, LU G H, XUE C W. Effects of sulfamethoxazole and 2-ethylhexyl-4-methoxycinnamate on the dissimilatory nitrate reduction processes and N2 O release in sediments in the Yarlung zangbo river [J]. International Journal of Environmental Research and Public Health, 2020, 17(6): 1822. doi: 10.3390/ijerph17061822
[87] JUNIER P, MOLINA V, DORADOR C, et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment [J]. Applied Microbiology and Biotechnology, 2010, 85(3): 425-440. doi: 10.1007/s00253-009-2228-9
[88] 孙小溪, 蒋宏忱. 湖泊微生物硝化过程研究进展 [J]. 微生物学报, 2020, 60(6): 1148-1161. SUN X X, JIANG H C. Research progress in microbial nitrification in lakes [J]. Acta Microbiologica Sinica, 2020, 60(6): 1148-1161(in Chinese).
[89] DEVRIES S L, ZHANG P F. Antibiotics and the terrestrial nitrogen cycle: A review [J]. Current Pollution Reports, 2016, 2(1): 51-67. doi: 10.1007/s40726-016-0027-3
[90] TONG X N, WANG X Z, HE X J, et al. Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland [J]. Science of the Total Environment, 2019, 656: 503-511. doi: 10.1016/j.scitotenv.2018.11.358
[91] TANG S Y, WANG C, JI G D. Response of ammonia-oxidizing Archaea and bacteria to streptomycin sulfate and penicillin in coastal wetlands along the Bohai Rim [J]. Land Degradation & Development, 2021, 32(5): 1917-1926.
[92] HE X J, JI G D. Responses of AOA and AOB activity and DNA/cDNA community structure to allylthiourea exposure in the water level fluctuation zone soil [J]. Environmental Science and Pollution Research International, 2020, 27(13): 15233-15244. doi: 10.1007/s11356-020-07952-9
[93] HUANG F J, LIN X B, HU W F, et al. Nitrogen cycling processes in sediments of the Pearl River Estuary: Spatial variations, controlling factors, and environmental implications [J]. CATENA, 2021, 206: 105545. doi: 10.1016/j.catena.2021.105545
[94] YIN G Y, HOU L J, LIU M, et al. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments [J]. Environmental Pollution, 2016, 214: 265-272. doi: 10.1016/j.envpol.2016.04.041
[95] 朱晓萌, 代彬彬, 严亚. 城市河道沉积物中残留医用抗生素对反硝化潜势的抑制作用及机制 [J]. 环境科学学报, 2019, 39(11): 3877-3887. ZHU X M, DAI B B, YAN Y. The inhibition effects of residual antibiotics on denitrification in the urban river sediments [J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3877-3887(in Chinese).
[96] CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth's nitrogen cycle [J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120
[97] REAY D S, DAVIDSON E A, SMITH K A, et al. Global agriculture and nitrous oxide emissions [J]. Nature Climate Change, 2012, 2(6): 410-416. doi: 10.1038/nclimate1458
[98] 邓璐, 何江涛, 邹华, 等. 洛美沙星对水中反硝化过程的影响模拟试验 [J]. 中国环境科学, 2020, 40(7): 2934-2942. doi: 10.3969/j.issn.1000-6923.2020.07.017 DENG L, HE J T, ZOU H, et al. Simulation experiments on effects of lomefloxacin on denitrification process in water [J]. China Environmental Science, 2020, 40(7): 2934-2942(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.07.017
[99] UNDERWOOD J C, HARVEY R W, METGE D W, et al. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment [J]. Environmental Science & Technology, 2011, 45(7): 3096-3101.
[100] WANG M, XIONG W G, ZOU Y, et al. Evaluating the net effect of sulfadimidine on nitrogen removal in an aquatic microcosm environment [J]. Environmental Pollution, 2019, 248: 1010-1019. doi: 10.1016/j.envpol.2019.02.048
[101] AHMAD M, VITHANAGE M, KIM K, et al. Inhibitory effect of veterinary antibiotics on denitrification in groundwater: A microcosm approach [J]. The Scientific World Journal, 2014, 2014: 879831.
[102] 陈淋鹏, 黄福杨, 张冲, 等. 诺氟沙星对地下水中反硝化过程的影响: 反硝化酶活性的证据 [J]. 环境科学学报, 2020, 40(7): 2496-2501. CHEN L P, HUANG F Y, ZHANG C, et al. Effect of norfloxacin on denitrification process in groundwater: Evidence for denitrifying enzyme activity [J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2496-2501(in Chinese).
[103] NOGARO G, BURGIN A J. Influence of bioturbation on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in freshwater sediments [J]. Biogeochemistry, 2014, 120(1/2/3): 279-294.
[104] SHAN J, YANG P P, RAHMAN M M, et al. Tetracycline and sulfamethazine alter dissimilatory nitrate reduction processes and increase N2O release in rice fields [J]. Environmental Pollution, 2018, 242: 788-796. doi: 10.1016/j.envpol.2018.07.061