[1] HORNE A J, GOLDMAN C R. Limnology[M]. (2nd ed. ). New York: Mc Graw-Hill Companies, 1994: 226-264.
[2] HÅKANSON L, BOULION V V. A general dynamic model to predict biomass and production of phytoplankton in lakes[J]. Ecological Modelling, 2003, 165(2−3): 285 − 301. doi: 10.1016/S0304-3800(03)00096-6
[3] GAMEIRO C, CARTAXANA P, BROTAS V. Environmental drivers of phytoplankton distribution and composition in Tagus Estuary, Portugal[J]. Estuarine, Coastal and Shelf Science, 2007, 75(1−2): 21 − 34. doi: 10.1016/j.ecss.2007.05.014
[4] THIÁHAUT G, TIXIER G, GUEROLD F, et al. Comparison of different biological indices for the assessment of river quality: Application to the upper river Moselle (France)[J]. Hydrobiologia, 2006, 570(1): 159 − 164. doi: 10.1007/s10750-006-0176-2
[5] 窦鸿身, 姜加虎. 中国五大淡水湖[M]. 北京: 中国科学技术出版社, 2003.
[6] CHEN Y, QIN B, TEUBNER K, et al. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China[J]. Journal of Plankton Research, 2003, 25(4): 445 − 453. doi: 10.1093/plankt/25.4.445
[7] QIN B Q, ZHU G W, GAO G, et al. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management[J]. Environmental Management, 2010, 45: 105 − 112.
[8] 水利部太湖流域管理局, 江苏省水利厅, 浙江省水利厅, 等. 太湖健康报告[R/OL]. [2021-12-28] http://www.tba.gov.cn/slbthlyglj/thjkzkbg/content/slth1_21eeb1db2bd54415b685221ba98caf07.html.
[9] 朱伟, 谈永琴, 王若辰, 等. 太湖典型区2010—2017年间水质变化趋势及异常分析[J]. 湖泊科学, 2018, 30(2): 296 − 305. doi: 10.18307/2018.0202
[10] 赵凯. 太湖水生植被分布格局及演变过程[D]. 南京: 南京师范大学, 2017.
[11] 金相灿, 屠清瑛. 湖泊富营养化调查规范[M]. 北京: 中国环境科学出版社, 1990.
[12] 胡鸿钧, 魏印心. 中国淡水藻类: 系统分类及生态[M]. 北京: 科学出版社, 2006.
[13] 章宗涉, 黄祥飞. 淡水浮游生物研究方法[M]. 北京: 科学出版社, 1991.
[14] ARHONDITSIS G B, WINDER M, BRETT M T, et al. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA)[J]. Water Research, 2004, 38(18): 4013 − 4027. doi: 10.1016/j.watres.2004.06.030
[15] HANEY J F, HALL D J. Sugar-coated Daphnia: a preservation technique for cladocera[J]. Limnology and Oceanography, 1973(18): 331 − 333.
[16] ENGELHARDT K A M, RITCHIE M E. Effects of macrophyte species richness on wetland ecosystem functioning and services[J]. Nature, 2001, 411: 687 − 689. doi: 10.1038/35079573
[17] 戴莽, 倪乐意, 谢平, 等. 利用大型围隔研究沉水植被对水体富营养化的影响[J]. 水生生物学报, 1999, 23(2): 97 − 101. doi: 10.3321/j.issn:1000-3207.1999.02.001
[18] SØNDERGAARD M, MOSS B. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes [M]. In: Jeppesen E, Søndergaard M, Søndergaard M &Christoffersen K(Eds), The Structuring Role of Submerged Macrophytes in Lakes. New York: Springer, 1998: 115-132.
[19] TANG X M, KRAUSFELDT L E, SHAO K, et al. Seasonal gene expression and the ecophysiological implications of toxin Microcystis aeruginosa blooms in Lake Taihu[J]. Environmental Science & Technology, 2018, 52: 11049 − 11059.
[20] 秦伯强, 杨桂军, 马健荣, 等. 太湖蓝藻水华“暴发”的动态特征及其机制[J]. 科学通报, 2016, 61(7): 759 − 770.
[21] QIN B Q, YANG G J, MA J R, et al. Spatiotemporal changes of cyanobacterial bloom in large shallow eutrophic Lake Taihu, China[J]. Frontiers in Microbiology, 2018, 9: 451. doi: 10.3389/fmicb.2018.00451
[22] OLIVER R L, GANF G G. Freshwater blooms[M]. Dordrecht: Kluwer Academic Publishers, 2000: 149-194.
[23] 许雪敏. 太湖水生植物遥感监测及演变驱动因素分析[D]. 西安: 西安科技大学, 2018.
[24] 杨桂军. 浮游植物对浮游动物和营养盐胁迫的响应研究[D]. 南京: 中国科学院南京地理与湖泊研究所, 2008.
[25] 孟顺龙, 陈家长, 胡庚东, 等. 2008年太湖梅梁湾浮游植物群落周年变化[J]. 湖泊科学, 2010, 22(4): 577 − 584.
[26] 王华, 陈华鑫, 徐兆安, 等. 2010--2017年太湖总磷浓度变化趋势分析及成因探讨[J]. 湖泊科学, 2019, 31(4): 919 − 929. doi: 10.18307/2019.0421
[27] 孙顺才, 黄倚平. 太湖[M]. 北京: 海洋出版社, 1993.
[28] 张民, 阳振, 史小丽. 太湖蓝藻水华的扩张与驱动因素[J]. 湖泊科学, 2019, 31(2): 336 − 344. doi: 10.18307/2019.0203