[1] DOHERTY R E. A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: part 1: historical background; carbon tetrachloride and tetrachloroethylene[J]. Environmental Forensics, 2000, 1(2): 69-81. doi: 10.1006/enfo.2000.0010
[2] HUANG B, CHAO L, WEI C, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71(10): 118-138.
[3] 孟宪荣, 葛松, 许伟, 等. 原位电阻热脱附修复氯代烃污染土壤[J]. 环境工程学报, 2021, 15(2): 669-676. doi: 10.12030/j.cjee.202009077
[4] 张明, 赵怡阳, 徐辰. 气相抽提与氧化压裂技术结合在有机污染土壤修复工程中的应用[J]. 环境与发展, 2020, 32(6): 88-90.
[5] UNGTAE K, PARKER, BORDEN. Stochastic cost-optimization and risk assessment of in situ chemical oxidation for dense non-aqueous phase liquid (DNAPL) source remediation[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(1): 73-89. doi: 10.1007/s00477-018-1633-y
[6] 蒋梦迪, 季跃飞, 陆隽鹤. 碳酸盐活化过硫酸盐降解对乙酰氨基酚的研究//清华大学持久性有机污染物研究中心[J]. 持久性有机污染物论坛2017暨第十二届持久性有机污染物学术研讨会论文集. 武汉, 2017: 223-225.
[7] NETA P, MADHAVAN V, ZEME H, et al. Rate constants and mechanism of reaction of SO4·- with aromatic compounds[J]. Chemischer Informationsdienst, 1977, 8(14): 163-164.
[8] YANG X, DING X, ZHOU L, et al. Oxygen dependent oxidation of trimethoprim by sulfate radical: kinetic and mechanistic investigations[J]. Chinese Chemical Letters, 2021, 32(10): 3164-3168. doi: 10.1016/j.cclet.2021.02.062
[9] USHANI U, LU X, WANG J, et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: a state-of-the-art review[J]. Chemical Engineering Journal, 2020, 402: 126232. doi: 10.1016/j.cej.2020.126232
[10] WANG W, CHEN M, WANG D, et al. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates[J]. Science of the Total Environment, 2021, 772: 145522. doi: 10.1016/j.scitotenv.2021.145522
[11] 郝慧茹, 张倩, 李孟, 等. 改性生物炭负载纳米零价铁活化过硫酸盐降解活性蓝19的机理及老化研究[J]. 环境科学学报, 2021, 41(2): 477-485.
[12] WANG R, LI C, LV N, et al. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion[J]. Bioresource Technology, 2021, 324: 124671. doi: 10.1016/j.biortech.2021.124671
[13] XU H, LIU Y, YANG B, et al. Inhibitory effect of released phosphate on the ability of nano zero-valent iron to boost anaerobic digestion of waste-activated sludge and the remediation method[J]. Chemical Engineering Journal, 2020, 405: 126506.
[14] KIM C, AHN J Y, KIM T Y, et al. Activation of persulfate by nanosized zero-valent iron (nZVI): mechanisms and transformation products of nZVI[J]. Environmental Science & Technology, 2018, 52(6): 3625-3633.
[15] LIANG C J, LIANG C P, CHEN C C. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene[J]. Journal of Contaminant Hydrology, 2009, 106(3/4): 173-182.
[16] LIANG C J, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediatin of TCE. II activated by chelated ferrous ion[J]. Chemosphere, 2004, 55(9): 1225-1233. doi: 10.1016/j.chemosphere.2004.01.030
[17] WU X L, GU X G, LU S G, et al. Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion[J]. Chemical Engineering Journal, 2014, 255: 585-592. doi: 10.1016/j.cej.2014.06.085
[18] YPABC D, MZBC D, QI W, et al. EDTA, oxalate, and phosphate ions enhanced reactive oxygen species generation and sulfamethazine removal by zero-valent iron-sciencedirect[J]. Journal of Hazardous Materials, 2020, 391: 12200.
[19] DONG H, HE Q, ZENG G, et al. Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA[J]. Chemical Engineering Journal, 2017, 316(Complete): 410-418.
[20] 李明, 孙勇, 顾梦斌, 等. 柠檬酸强化纳米零价铁活化过硫酸钠体系降解水溶液中的三氯乙烯[J]. 环境工程学报, 2020, 14(3): 569-578. doi: 10.12030/j.cjee.201905182
[21] ZHANG K J, ZHOU X Y, ZHANG T Q, et al. Degradation of the earthy and musty odorant 2, 4, 6-tricholoroanisole by persulfate activated with iron of different valences[J]. Environmental Science and Pollution Research, 2018, 25(4): 3435-3445. doi: 10.1007/s11356-017-0452-x
[22] 余文杰. 亚铁离子活化过硫酸盐氧化降解普施安蓝MX-R的过程强化研究[D]. 重庆: 重庆大学, 2019.
[23] 钟燕清, 张永清, 陈宪方, 等. 不同螯合剂对零价铁活化过硫酸盐降解对氯苯胺的影响[J]. 环境化学, 2015, 34(4): 685-691. doi: 10.7524/j.issn.0254-6108.2015.04.2014101302
[24] 王薇. 包覆型纳米铁的制备及用于地下水污染修复的实验研究[D]. 天津: 南开大学, 2008.
[25] 王胜军. 零价金属强化氧化工艺去除水中邻苯二甲酸二丁酯的研究[D].哈尔滨: 哈尔滨工业大学, 2010.
[26] 张良波, 许春红, 祝慧娜, 等. Fe2+/过硫酸钠体系降解盐酸四环素的研究[J]. 环境污染与防治, 2017, 39(7): 776-779.
[27] 陈希. 基于过硫酸盐高级氧化法的精对苯二甲酸生产废水处理及机理研究[D]. 天津: 河北工业大学, 2019.
[28] 金晓英, 李任超, 陈祖亮. 纳米零价铁活化过硫酸钠降解2, 4-二氯苯酚[J]. 环境化学, 2014, 33(5): 812-818. doi: 10.7524/j.issn.0254-6108.2014.05.007
[29] HE J, YANG X, MEN B, et al. EDTA enhanced heterogeneous Fenton oxidation of dimethyl phthalate catalyzed by Fe: kinetics and interface mechanism[J]. Journal of Molecular Catalysis A-Chemical, 2015, 408: 179-188. doi: 10.1016/j.molcata.2015.07.030
[30] MUSHTAQUE A, TEEL A L, OLHA S, et al. Oxidative and reductive pathways in iron-ethylenediaminetetraacetic acid-activated persulfate systems[J]. Journal of Environmental Engineering, 2012, 138(4): 411-418. doi: 10.1061/(ASCE)EE.1943-7870.0000496
[31] GDS A, EOM A LLB B, et al. Contrasting the performance of photo-fenton at neutral pH in the presence of different organic iron-complexes using hydrogen peroxide or persulfate as oxidants for naproxen degradation and removal of antimicrobial activity[J]. Process Safety and Environmental Protection, 2021, 147: 798-807. doi: 10.1016/j.psep.2021.01.005
[32] HUSSAIN I, ZHANG Y, HUANG S, et al. Degradation of p-chloroaniline by persulfate activated with zero-valent iron[J]. Chemical Engineering Journal, 2012, 203(5): 269-276.
[33] LIANG C, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558-5562.
[34] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
[35] NETA P, HUIERE, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. National Bureau of Stan, 1979, 17(3): 1027-1284.
[36] 董书玉. 零价铁活化过硫酸盐降解水中萘普生的研究[D]. 吉林: 东北电力大学, 2020.
[37] 张珍. 纳米级双金属体系对水中氯苯和多氯联苯的催化还原脱氯研究[D]. 杭州: 浙江大学, 2013.