[1] SUSS M, PORADA S, SUN X, et al. Water desalination via capacitive deionization: What is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8(8): 2296-2319.
[2] Ma J X, HE C, HE D, et al. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI[J]. Water Research, 2018, 144: 296-303. doi: 10.1016/j.watres.2018.07.049
[3] XING W L, LIANG J, TANG W W, et al. Perchlorate removal from brackish water by capacitive deionization: Experimental and theoretical investigations[J]. Chemical Engineering Journal, 2019, 361: 209-218. doi: 10.1016/j.cej.2018.12.074
[4] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2009, 452: 337-346.
[5] TAN C, HE C, TANG W W, et al. Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters[J]. Water Research, 2018, 147(15): 276-286.
[6] 赵飞, 苑志华, 钟鹭斌, 等. 电容去离子技术及其电极材料研究进展[J]. 水处理技术, 2016, 42(5): 38-44.
[7] THAMILSELVAN A, NESARAJ A S, NOEL M. Review on carbon-based electrode materials for application in capacitive deionization process[J]. International Journal of Environmental Science and Technology, 2016, 13(12): 2961-2976. doi: 10.1007/s13762-016-1061-9
[8] YANG S J, KIM T, LEE K, et al. Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity[J]. Carbon, 2014, 71: 294-302. doi: 10.1016/j.carbon.2014.01.056
[9] HARO M, RASINES G, MACIAS C, et al. Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water[J]. Carbon, 2011, 49(12): 3723-3730. doi: 10.1016/j.carbon.2011.05.001
[10] WIMALASIRI Y, MOSSAD M, ZOU L. Thermodynamics and kinetics of ammonium ions by graphene laminate electrodes in capacitive deionization[J]. Desalination, 2015, 357: 178-188. doi: 10.1016/j.desal.2014.11.015
[11] XU S, WANG T H, WANG C F, et al. The effect of crystal phase of manganese oxide on the capacitive deionization of simple electrolytes[J]. Science of the Total Environment, 2019, 675: 31-40. doi: 10.1016/j.scitotenv.2019.04.172
[12] HUYSKENS C, HELSEN J, HAAN A D. Capacitive deionization for water treatment: Screening of key performance parameters and comparison of performance for different ions[J]. Desalination, 2013, 328: 8-16. doi: 10.1016/j.desal.2013.07.002
[13] MOSSAD M, ZOU L. A study of the capacitive deionization performance under various operational conditions[J]. Journal Hazardous Materials, 2012, 213: 491-497.
[14] ZHAO R, SATPRADIT O, RIJNAARTS H, et al. Optimization of salt adsorption rate in membrane capacitive deionization[J]. Water Research, 2013, 47(5): 1941-1952. doi: 10.1016/j.watres.2013.01.025
[15] DING Z B, XU X T, LI Y Q et al. Significantly improved stability of hybrid capacitive deionization using nickel hexacyanoferrate/reduced graphene oxide cathode at low voltage operation - ScienceDirect[J] Desalination, 2019, 468: 114078-114087.
[16] MOSSAD M, ZOU L. A study of the capacitive deionization performance under various operational conditions[J]. Journal Hazardous Materials, 2012, 213-214: 491-497. doi: 10.1016/j.jhazmat.2012.02.036
[17] 杨宏艳, 张卫珂, 葛坤, 等. 流动性电极电容去离子技术的脱盐性能研究[J]. 环境污染与防治, 2017, 39(8): 911-919.
[18] KIM Y H, TANG K, CHANG J, et al. Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis[J]. Separation Science and Technology, 2019, 54(13): 2112-2125. doi: 10.1080/01496395.2019.1608243
[19] LIANG P, SUN X, BIAN Y, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420(5): 63-69.
[20] OREN Y. Capacitive deionization (CDI) for desalination and water treatment-past, present and future: A review[J]. Desalination, 2008, 228(1-3): 10-29. doi: 10.1016/j.desal.2007.08.005
[21] SHIN Y, DONG C D, HUANG Y H, et al. Electro-sorption of ammonium ion onto nickel foam supported highly microporous activated carbon prepared from agricultural residues (dried Luffa cylindrica)- ScienceDirect[J]. Science of the Total Environment, 2019, 673: 296-305. doi: 10.1016/j.scitotenv.2019.04.066
[22] AMP N G T, RITTERSUPA/SUP U. Influence of concentration of supporting electrolyte on electrochemistry of redox systems on multi-walled carbon nanotubes[J]. Physics and Chemistry of Liquids, 2012, 50(5): 661-668. doi: 10.1080/00319104.2012.663496
[23] LI H, LIANG S, LI J, et al. The capacitive deionization behavior of a carbon nanotube and reduced graphene oxide composite[J]. Journal of Materials Chemistry A, 2013, 1(21): 6335-6341. doi: 10.1039/c3ta10681k
[24] XU B, XU X, GAO H, et al. Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization[J]. Separation and Purification Technology, 2020, 250: 117243. doi: 10.1016/j.seppur.2020.117243
[25] ZHANG X, XIE K, GAO J, et al. Highly pore-expanded benzidine-functionalized graphene framework for enhanced capacitive deionization[J]. Desalination, 2018, 445: 149-158. doi: 10.1016/j.desal.2018.08.001
[26] JOLANTA N, DOROTA G F, KRZYSZTOF N, et al. The effect of supporting electrolyte concentration on zinc electrodeposition kinetics from methimazole solutions[J]. Electroanalysis, 2019, 31(6): 1141-1149. doi: 10.1002/elan.201800852
[27] WANG C, SONG H, ZHANG Q, et al. Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration[J]. Desalination, 2015, 365: 407-415. doi: 10.1016/j.desal.2015.03.025
[28] NIE C, PAN L, LIU Y, et al. Electrophoretic deposition of carbon nanotubes-polyacrylic acid composite film electrode for capacitive deionization[J]. Electrochemical Acta, 2012, 66: 06-109.
[29] YAN W, LUO H, HOU W, et al. Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide[J]. Journal of Colloid & Interface Science, 2013, 394(1): 183-191.