[1] |
李名升, 佟连军. 辽宁省污灌区土壤重金属污染特征与生态风险评价[J]. 中国生态农业学报, 2008, 16(6): 1517 − 1522.
|
[2] |
YOON J M, OLIVER D J, SHANKS J V. Phytotoxicity and phytoremediation of 2, 6-dinitrotoluene using a model plant, Arabidopsis thaliana[J]. Chemosphere, 2007, 68: 1050 − 1057. doi: 10.1016/j.chemosphere.2007.02.003
|
[3] |
王垚, 李江遐, 王冬良, 等. 花卉修复土壤重金属污染研究进展[J]. 环境监测管理与技术, 2019, 31(5): 1 − 5.
|
[4] |
胥九兵, 王加宁, 迟建国, 等. 石油烃-镉污染土壤的生物修复研究[J]. 安全与环境工程, 2012, 19(3): 29 − 32. doi: 10.3969/j.issn.1671-1556.2012.03.007
|
[5] |
ALI A N, BERNAL M P, ATER M. Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc[J]. Aquatic Botany, 2004, 80(3): 163 − 176. doi: 10.1016/j.aquabot.2004.08.008
|
[6] |
CHERIAN S, OLIVEIRA M M. Transgenic plants in phytoremediation: Recent advances and new possibilities[J]. Environmental Science & Technology, 2005, 39: 9377 − 9390.
|
[7] |
FU S L, COLEMAN D C, HENDRIX P F, et al. Responses of trophic groups of soil nematodes to residue application under conventional tillage and no-till regimes[J]. Soil Biology & Biochemistry, 2000, 32: 1731 − 1741.
|
[8] |
MARTINEZ J G, TORRES M A, DOS SANTOS G, et al. Influence of heavy metals on nematode community structure in deteriorated soil by gold mining activities in Sibutad, southern Philippines[J]. Ecology Indicators, 2018, 91: 712 − 721. doi: 10.1016/j.ecolind.2018.04.021
|
[9] |
侯静. 重金属抗性花卉蹄选及牵牛对镉、铬、汞积累特性的研究[D]. 大连: 辽宁师范大学, 2012.
|
[10] |
BARKER K R. Nematode extraction and bioassays [M]. Raleigh: North Carolina State University Graphics, 1985: 19-35.
|
[11] |
BONGERS, T. Nematoden van Netherland [M]. KNNV Bibliotheekuitgave 46, Netherlands: Pirola, Schrool, 1988: 408.
|
[12] |
全国农业技术推广服务中心, 中国农业科学院农业资源与农业区划研究所, 华中农业大学, 等. 土壤有机质的测定 第6部分: NY/T 1121.6—2006[S]. 北京: 中国农业出版社, 2019.
|
[13] |
国家环境保护局, 国家技术监督局. 中华人民共和国国家标准-土壤质量 铅、镉的测定-石墨炉原子吸收分光光度法: GB/T 17141—1997[S]. 北京: 中国环境科学出版社, 1998.
|
[14] |
南京市环境监测中心站. 土壤和沉积物铜、锌、铅、镍、铬的测定-火焰原子吸收分光光度法: HJ 419-2019[S]. 北京: 中国环境科学出版社, 2019.
|
[15] |
YEATES G W, BONGERS T, DE GOEDE R G M, et al. Feeding habits in soil nematode families and genera-an outline for ecologists[J]. Journal of Nematology, 1993, 25(3): 315 − 331.
|
[16] |
BONGERS T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83: 14 − 19. doi: 10.1007/BF00324627
|
[17] |
SHANNON C E, WEAVER W. The mathematical theory of communication [M]. Urbana and Chicago, USA: University of Illinois Press, 1949: 144.
|
[18] |
SIMPSON E H. Measurement of diversity [J]. Nature, 1949, 163: 688.
|
[19] |
WASILEWSKA L. Long-term changes in communities of soil nematodes on fen peat meadows due to the time since their drainage[J]. Ekologia Polska, 1991, 39: 59 − 104.
|
[20] |
FERRIS H, BONGERS T, DE GOEDE R G M. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept[J]. Appllied Soil Ecology, 2001, 18: 13 − 29.
|
[21] |
JOUTEY N T, BAHAFID W, SAYEL H, et al. Phytotoxic effect of hexavalent chromium on germination and seedling growth of seeds of different plant species[J]. Journal of Agricultural Technology, 2013, 9(2): 361 − 372.
|
[22] |
林瑞聪, 潘伟斌, 邓翠兰, 等. 单一及复合外源镉(Ⅱ)铬(Ⅲ)污染在红壤中的老化过程[J]. 科学技术与工程, 2019, 19(23): 328 − 335. doi: 10.3969/j.issn.1671-1815.2019.23.051
|
[23] |
傅晓萍, 豆长明, 胡少平, 等. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11): 1354 − 1358. doi: 10.3773/j.issn.1005-264x.2010.11.013
|
[24] |
刘云惠, 魏显有, 王秀敏, 等. 土壤中铬的吸附与形态提取研究[J]. 河北农业大学学报, 2000, 23(1): 16 − 20. doi: 10.3969/j.issn.1000-1573.2000.01.005
|
[25] |
SÁNCHEZ-MORENO S, NAVAS A. Nematode diversity and food web condition in heavy metal polluted soils in a river basin in Southern Spain[J]. European Journal of Soil Biology, 2007, 43(3): 166 − 179. doi: 10.1016/j.ejsobi.2007.01.002
|
[26] |
BAKONYI G, NAGY P, KÁDÁR I. Long-term effects of heavy metals and microelements on nematode assemblage[J]. Toxicology Letters, 2003, 140-141: 391 − 401. doi: 10.1016/S0378-4274(03)00035-3
|
[27] |
WANG L J, ZHANG W J, WANG J H, et al. Toxicity of enrofloxacin and cadmium alone and in combination to enzymatic activities and microbial community structure in soil[J]. Environmental Geochemistry Health, 2019, 41: 2593 − 2606. doi: 10.1007/s10653-019-00307-5
|
[28] |
BILGRAMI A L, GAUGLER R, BREY C. Prey preference and feeding behavior of the diplogastrid predator Mononchoides gaugleri (Nematoda: Diplogastrida)[J]. Nematology, 2005, 7: 333 − 342. doi: 10.1163/156854105774355563
|
[29] |
VALDOVINOS F S, RAMOS-JILIBERTO R, GARAY-NARVÁEZ L, et al. Consequences of adaptive behaviour for the structure and dynamics of food webs[J]. Ecology Letters, 2010, 13: 1546 − 1559. doi: 10.1111/j.1461-0248.2010.01535.x
|
[30] |
ŠALAMÚN P, RENČO M, MIKLISOVÁ D, et al. Nematode community structure in the vicinity of a metallurgical factory[J]. Environmental Monitoring Assessment, 2011, 183(1-4): 451 − 464. doi: 10.1007/s10661-011-1932-y
|
[31] |
晋海军, 王海霞. 植物对重金属镉的吸收与耐受机制研究进展[J]. 中国农学通报, 2019, 35(24): 52 − 57. doi: 10.11924/j.issn.1000-6850.casb19030015
|
[32] |
NAGY P, BAKÓNYI G, BONGERS T, et al. Effects of microelements on soil nematode assemblages seven years after contaminating an agricultural field[J]. Science of the Total Environment, 2004, 320(2-3): 131 − 143. doi: 10.1016/j.scitotenv.2003.08.006
|
[33] |
HARADA H, KURAUCHI M, HAYASHI R, et al. Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents[J]. Ecotoxicology and Environmental Safety, 2006, 66: 378 − 383.
|
[34] |
MARTINEZ J G, QUIOBE S P, MOENS T. Effects of mercury (Hg) on soil nematodes: A microcosm approach[J]. Archives of Environmental Contamination and Toxicology, 2019, 77(3): 421 − 431. doi: 10.1007/s00244-019-00652-7
|
[35] |
KORTHALS G W, VAN DE ENDE A, VAN MEGEN H, et al. Short-term effects of cadmium, copper, nickel and zinc on soil nematodes from different feeding and life-history strategy groups[J]. Applied Soil Ecology, 1996, 4: 107 − 117. doi: 10.1016/0929-1393(96)00113-8
|