[1] HUANG W, WANG F, QIU N, et al. Enteromorpha prolifera-derived Fe3C/C composite as advanced catalyst for hydroxyl radical generation and efficient removal for organic dye and antibiotic [J]. Journal of Hazardous Materials, 2019, 378(6): 120728.
[2] ZAINAB S M, JUNAID M, XU N, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks [J]. Water Research, 2020, 187: 116455. doi: 10.1016/j.watres.2020.116455
[3] XIAO X, MA X, LIU Z, et al. Degradation of rhodamine B in a novel bio-photoelectric reductive system composed of Shewanella oneidensis MR-1 and Ag3PO4 [J]. Environment International, 2019, 126(3): 560-567.
[4] YANG Y, XU L, LI W, et al. Adsorption and degradation of sulfadiazine over nanoscale zero-valent iron encapsulated in three-dimensional graphene network through oxygen-driven heterogeneous Fenton-like reactions [J]. Applied Catalysis B:Environmental, 2019, 259: 118057. doi: 10.1016/j.apcatb.2019.118057
[5] ZHOU P, LI W, ZHANG J, et al. Removal of Rhodamine B during the corrosion of zero valent tungsten via a tungsten species-catalyzed Fenton-like system [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100(4): 202-209.
[6] GUPTA V K, SUHAS. Application of low-cost adsorbents for dye removal–A review [J]. Journal of Environmental Management, 2009, 90(8): 2313-2342. doi: 10.1016/j.jenvman.2008.11.017
[7] ZAHRIM A Y, HILAL N. Treatment of highly concentrated dye solution by coagulation/flocculation–sand filtration and nanofiltration [J]. Water Resources and Industry, 2013, 3(6): 23-34.
[8] AKBARI A, SABOURI Z, HOSSEINI H A, et al. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments [J]. Inorganic Chemistry Communications, 2020, 115: 107867. doi: 10.1016/j.inoche.2020.107867
[9] QIAN H, HOU Q, YU G, et al. Enhanced removal of dye from wastewater by Fenton process activated by core-shell NiCo2O4@FePc catalyst [J]. Journal of Cleaner Production, 2020, 273: 123028. doi: 10.1016/j.jclepro.2020.123028
[10] 李赛, 田瑜, 徐婷婷, 等. 绿色纳米零价铁为催化剂的类芬顿法降解甲基橙 [J]. 应用化工, 2020, 49(2): 302-307. doi: 10.3969/j.issn.1671-3206.2020.02.009 LI S, TIAN Y, XU T T, et al. Degradation of methyl orange by Fenton-like with green synthesis of nano-zero-valence iron as catalytic [J]. Applied Chemical Industry, 2020, 49(2): 302-307(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.02.009
[11] SHEN T, SU W, YANG Q, et al. Synergetic mechanism for basic and acid sites of MgMxOy (M = Fe, Mn) double oxides in catalytic ozonation of p-hydroxybenzoic acid and acetic acid [J]. Applied Catalysis B:Environmental, 2020, 279: 119346. doi: 10.1016/j.apcatb.2020.119346
[12] LI H, WANG Z, LU Y, et al. Microplasma electrochemistry (MIPEC) methods for improving the photocatalytic performance of g-C3N4 in degradation of RhB [J]. Applied Surface Science, 2020, 531: 147307. doi: 10.1016/j.apsusc.2020.147307
[13] SHI Z, ZHANG Y, SHEN. , et al. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light [J]. Chemical Engineering Journal, 2020, 386: 124010. doi: 10.1016/j.cej.2020.124010
[14] JESSIELEENA A A, PRIYANKA M, SARAVANAKUMAR M P. Comparative study of Fenton, Fe2+/NaOCl and Fe2+/(NH4)2S2O8 on tannery sludge dewaterability, degradability of organics and leachability of chromium [J]. Journal of Hazardous Materials, 2021, 402: 123495. doi: 10.1016/j.jhazmat.2020.123495
[15] XIE W, ZHOU F, LIU J, et al. Synergistic reutilization of red mud and spent pot lining for recovering valuable components and stabilizing harmful element [J]. Journal of Cleaner Production, 2020, 243: 118624. doi: 10.1016/j.jclepro.2019.118624
[16] XIE W, ZHOU F, BI X, et al. Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions [J]. Journal of Hazardous Materials, 2018, 358(7): 441-449.
[17] 李彬, 张宝华, 宁平, 等. 赤泥资源化利用和安全处理现状与展望 [J]. 化工进展, 2018, 37(2): 714-723. LI B, ZHANG B H, NING P, et al. Present status and prospect of red mud resource utilization and safety treatment [J]. Chemical Industry and Engineering Progress, 2018, 37(2): 714-723(in Chinese).
[18] 王斌, 朱文凤, 王林江, 等. 广西拜尔法赤泥烧胀陶粒制备及对水体中Pb2+的吸附 [J]. 武汉理工大学学报, 2014, 36(4): 30-34. WANG B, ZHU W F, WANG L J, et al. Preparation of sintering-expanded haydite based on guangxi pingguo red mud and adsorption of Pb2+ in water [J]. Journal of Wuhan University of Technology, 2014, 36(4): 30-34(in Chinese).
[19] 吴川, 黄柳, 薛生国, 等. 赤泥对砷污染的调控研究进展 [J]. 环境化学, 2016, 35(1): 141-149. doi: 10.7524/j.issn.0254-6108.2016.01.2015071004 WU C, HUANG L, XUE S G, et al. Review on the application of bauxite residue on As contamination remediation [J]. Environmental Chemistry, 2016, 35(1): 141-149(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.01.2015071004
[20] 陈静, 栾兆坤, 何绪文. 铝矿赤泥强化聚合氯化铝混凝除磷试验研究 [J]. 环境化学, 2007, 26(5): 638-641. doi: 10.3321/j.issn:0254-6108.2007.05.018 CHEN J, LUAN Z K, HE X W. Experimental study on enhancing phosphate removal by coagulation with polyaluminum chloride and red mud [J]. Environmental Chemistry, 2007, 26(5): 638-641(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.05.018
[21] DU Y, DAI M, CAO J, et al. Efficient removal of acid orange 7 using a porous adsorbent-supported zero-valent iron as a synergistic catalyst in advanced oxidation process [J]. Chemosphere, 2020, 244: 125522. doi: 10.1016/j.chemosphere.2019.125522
[22] WANG D, JIN L, LI Y, et al. Integrated process of coal tar upgrading and in-situ reduction of Fe2O3 [J]. Fuel Processing Technology, 2019, 191(3): 20-28.
[23] CHEN J, YU L, SUN J, et al. Synthesis of hercynite by reaction sintering [J]. Journal of the European Ceramic Society, 2011, 31(3): 259-263. doi: 10.1016/j.jeurceramsoc.2010.09.017
[24] 韩丽君, 赵治军, 常志伟. 三维有序大孔Fe2O3/SiO2复合脱硫剂中温脱硫性能及再生行为研究 [J]. 应用化工, 2020, 49(5): 1133-1137. doi: 10.3969/j.issn.1671-3206.2020.05.016 HAN L J, ZHAO Z J, CHANG Z W. Exploration of H2S removal performance and regeneration behavior on 3DOM Fe2O3/SiO2 adsorbents at moderate temperature [J]. Applied Chemical Idustry, 2020, 49(5): 1133-1137(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.05.016
[25] XUE G, WANG Q, QIAN Y, et al. Simultaneous removal of aniline, antimony and chromium by ZVI coupled with H2O2: Implication for textile wastewater treatment [J]. Journal of Hazardous Materials, 2019, 368(2): 840-848.
[26] JENZER H, KOHLER H, BROGER C. The role of hydroxyl radicals in irreversible inactivation of lactoperoxidase by excess H2O2: A Spin-trapping/ESR and absorption spectroscopy study [J]. Archives of Biochemistry and Biophysics, 1987, 258(2): 381-390. doi: 10.1016/0003-9861(87)90359-6
[27] RAHHAL S, RICHTER H W. Reduction of hydrogen peroxide by the ferrous iron chelate of diethylenetriamine-N, N, N', N", N"-pentaacetate [J]. Journal of the American Chemical Society, 1988, 110(10): 3126-3133. doi: 10.1021/ja00218a022