[1] LINARES M R, BRUGUERA S L, BARCELó D. Analysis, occurrence and fate of MTBE in the aquatic environment over the past decade [J]. Trac Trends in Analytical Chemistry, 2006, 25(10): 1016-1029. doi: 10.1016/j.trac.2006.06.011
[2] WILLIAMS M. The merck index: An encyclopedia of chemicals, drugs, and biologicals, 15th edition edited [J]. Drug Development Research, 2013, 74(5): 339-339. doi: 10.1002/ddr.21085
[3] RUSSO A V, LOBO D N D, JACOBO S E. Removal of MTBE in columns filled with modified natural zeolites [J]. Procedia Materials Science, 2015, 8: 375-382. doi: 10.1016/j.mspro.2015.04.087
[4] FRANCISCO FACETTI J, NUNEZ R, GOMEZ C L, et al. Methyl tert-butyl ether (MtBE) in deep wells of the Patino Aquifer, Paraguay: A preliminary characterization [J]. The Science of the Total Environment, 2019, 647: 1640-1650. doi: 10.1016/j.scitotenv.2018.08.062
[5] LEVCHUK I, BHATNAGAR A, SILLANPää M. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water [J]. Science of The Total Environment, 2014, 476/477: 415-433. doi: 10.1016/j.scitotenv.2014.01.037
[6] ORGANIZATION W H. Guidelines for drinking-water quality: fourth edition[R]. World Health Organization, 2011.
[7] AGENCY U S E P. 2012 Edition of the Drinking Water Standards and Health Advisories[R]. 2012.
[8] GARRETT P, MOREAU M. MTBE as a ground water contaminant [J]. Prevention, Detection and Restoration, 1986: 227-238.
[9] CHEN C S, HSEU Y C, LIANG S H, et al. Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay [J]. Journal of Hazardous Materials, 2008, 153(1): 351-356.
[10] EPA U. Oxyfuels Information Needs[R]. 1996. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=29060.
[11] SAHAY N M T, MARCHIONNA M. Low-cost conversion of MTBE units to make alternative gasoline blending components [J]. World Refining, 2002, 12(7): 34-70.
[12] 《中国能源》编辑部. 《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》印发 [J]. 中国能源, 2017, 39(9): 1. Editorial Department Of China Energy. Implementation plan for expanding the production of bio fuel ethanol and popularizing the use of ethanol gasoline for vehicles [J]. China Energy, 2017, 39(9): 1(in Chinese).
[13] VIGNOLA R, BAGATIN R, D’AURIS A D F, et al. Zeolites in a permeable reactive barrier (PRB): One year of field experience in a refinery groundwater—Part 1: The performances [J]. Chemical Engineering Journal, 2011, 178: 204-209. doi: 10.1016/j.cej.2011.10.050
[14] VIGNOLA R, COVA U, FABIANI F, et al. Remediation of hydrocarbon contaminants in groundwater using specific zeolites in full-scale pump&treat and demonstrative Permeable barrier tests [J]. Studies in Surface Science & Catalysis, 2008, 174(8): 573-576.
[15] BURBANO A A, DIONYSIOU D D, SUIDAN M T, et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent [J]. Water Research, 2005, 39(1): .107-118. doi: 10.1016/j.watres.2004.09.008
[16] SALANITRO J P, DIAZ L A, WILLIAMS M P, et al. Isolation of a bacteria culture that degrades methyl t-butyl ether [J]. Applied & Environmental Microbiology, 1995, 61(1): 406.
[17] KANE S R, BELLER H R, LEGLER T C, et al. Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites [J]. Applied & Environmental Microbiology, 2002, 67(12): 5824-5829.
[18] HATZINGER P B, MCCLAY K, VAINBERG S, et al. Biodegradation of methyl tert-butyl ether by a pure bacterial culture [J]. Applied & Environmental Microbiology, 2001, 67(12): 5601-5607.
[19] BURGHOFF B, MARQUES J S, LANKVELT B M V, et al. Solvent impregnated resins for MTBE removal from aqueous environments [J]. Reactive & Functional Polymers, 2010, 70(1): 41-47.
[20] KELLER A, SANDALL O, RINKER R, et al. Cost and performance evaluation of treatment technologies for MTBE-contaminated water[J]. 1998.
[21] MOHEBALI S. Degradation of methyl t-butyl ether (MTBE) by photochemical process in nanocrystalline TiO2 slurry: Mechanism, by-products and carbonate ion effect [J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 1070-1078. doi: 10.1016/j.jece.2013.08.022
[22] KIM D K, O’SHEA K E, COOPER W J. Mechanistic considerations for the degradation of methyl tert-butyl ether (MTBE) by sonolysis: Effect of argon vs. oxygen saturated solutions [J]. Ultrasonics Sonochemistry, 2012, 19(4): 959-968. doi: 10.1016/j.ultsonch.2011.12.003
[23] ANDERSON, MICHAEL A. Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites [J]. Environmental Science & Technology, 2000, 34(4): 725-727.
[24] ERDEM-SENATALAR A, BERGENDAHL J A, GIAYA A, et al. Adsorption of methyl tertiary butyl ether on hydrophobic molecular sieves [J]. Environmental Engineering Science, 2004, 21(6): 722-729. doi: 10.1089/ees.2004.21.722
[25] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electronschemical kinetic data base for combustion chemistry. Part 3: Propane [J]. Journal of Physical & Chemical Reference Data, 1988, 17(2): 513-886.
[26] BURBANO A A, DIONYSIOU D D, SUIDAN M T. Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent [J]. Water Research, 2008, 42(12): 3225-3239. doi: 10.1016/j.watres.2008.04.004
[27] RUPPERT G, BAUER R, HEISLER G. The photo-Fenton reaction-an effective photochemical wastewater treatment process [J]. Journal of Photochemistry & Photobiology A Chemistry, 1993, 73(1): 75-78.
[28] 刘勇弟, 徐寿昌. 紫外-Fenton试剂的作用机理及在废水处理中的应用 [J]. 环境化学, 1991, 34(4): 302-306. LIU Y D, XU S C. Study on the reaction mechanism of UV-Fenton reagent and its application to wastewater treatment [J]. Environmental Chemistry, 1991, 34(4): 302-306(in Chinese).
[29] ZHOU M, TAN Q, QIAN W, et al. Degradation of organics in reverse osmosis concentrate by electro-Fenton process [J]. Journal of Hazardous Materials, 2012, 215/216(15): 287-293.
[30] OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review [J]. Critical Reviews in Environmental Ence & Technology, 2014, 44(23): 2577-2641.
[31] VORONTSOV A V. Advancing Fenton and photo-Fenton water treatment through the catalyst design [J]. Journal of Hazardous Materials, 2019, 372(15): 103-112.
[32] 张德莉, 黄应平, 罗光富, 等. Fenton及Photo-Fenton反应研究进展 [J]. 环境化学, 2006, 25(2): 121-127. doi: 10.3321/j.issn:0254-6108.2006.02.001 ZHANG D L, HUANG Y P, LUO G F, et al. Research progress of Fenton and photo-Fenton reaction [J]. Environmental Chemistry, 2006, 25(2): 121-127(in Chinese). doi: 10.3321/j.issn:0254-6108.2006.02.001
[33] SEDLAZECK K P, VOLLPRECHT D, MüLLER P, et al. Decomposition of dissolved organic contaminants by combining a boron-doped diamond electrode, zero-valent iron and ultraviolet radiation [J]. Chemosphere, 2019, 217: 897-904. doi: 10.1016/j.chemosphere.2018.11.043
[34] STEFAN M I, MACK J, BOLTON J R. Degradation pathways during the treatment of methyl tert-butyl ether by the UV/H2O2 process [J]. Environmental Science & Technology, 2000, 34(4): 650-658.
[35] KORYABKINA N, BERGENDAHL J A, THOMPSON R W, et al. Adsorption of disinfection byproducts on hydrophobic zeolites with regeneration by advanced oxidation [J]. Microporous & Mesoporous Materials, 2007, 104(1/3): 77-82.
[36] WANG S, LI H, XIE S, et al. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment [J]. Chemosphere, 2006, 65(1): 82-87. doi: 10.1016/j.chemosphere.2006.02.043
[37] ABU-LAIL L, BERGENDAHL J A, THOMPSON R W. Adsorption of methyl tertiary butyl ether on granular zeolites: Batch and column studies [J]. Journal of Hazardous Materials, 2010, 178(1/3): 363-369.
[38] GONZALEZ-OLMOS R, ROLAND U, TOUFAR H, et al. Fe-zeolites as catalysts for chemical oxidation of MTBE in water with H2O2 [J]. Applied Catalysis B Environmental, 2009, 89(3/4): 356-364.
[39] ZHANG Y H, FEI J, SHEN Z T, et al. Kinetic and equilibrium modelling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: Batch and column studies [J]. Journal of Hazardous Materials, 2018, 347: 461-469. doi: 10.1016/j.jhazmat.2018.01.007
[40] ROSSNER A, KNAPPE D R U. MTBE adsorption on alternative adsorbents and packed bed adsorber performance [J]. Water Research, 2008, 42(8/9): 2287-2299.
[41] ZECCHINA A, RIVALLAN M, BERLIER G, et al. Structure and nuclearity of active sites in Fe-zeolites: Comparison with iron sites in enzymes and homogeneous catalysts [J]. Physical Chemistry Chemical Physics, 2007, 9(27): 3483-99. doi: 10.1039/b703445h
[42] SCHWIDDER M, KUMAR M S, KLEMENTIEV K, et al. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Ⅰ. Relations between active site structure and catalytic performance [J]. Journal of Catalysis, 2005, 231(2): 314-330. doi: 10.1016/j.jcat.2005.01.031
[43] SZOSTAK R. Handbook of molecular sieves[M]. Van Nostrand Reinhold, 1992.
[44] YAZAYDIN A O, THOMPSON R W. Molecular simulation of the adsorption of MTBE in silicalite, mordenite, and zeolite beta [J]. Journal of Physical Chemistry B, 2006, 110(29): 14458-14462. doi: 10.1021/jp061986n
[45] CENTI G, GRANDE A, PERATHONER S. Catalytic conversion of MTBE to biodegradable chemicals in contaminated water [J]. Catalysis Today, 2002, 75(1): 69-76.
[46] GONZALEZ-OLMOS R, KOPINKE F D, MACKENZIE K, et al. Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation [J]. Environmental Science & Technology, 2013, 47(5): 2353-2360.
[47] PéREZ-RAM??REZ J, KUMAR M S, BRÜCKNER A. Reduction of N2O with CO over FeMFI zeolites: Influence of the preparation method on the iron species and catalytic behavior [J]. Journal of Catalysis, 2004, 223(1): 13-27. doi: 10.1016/j.jcat.2004.01.007
[48] RIBERA A, ARENDS I W C E, DE VRIES S, et al. Preparation, characterization, and performance of fezsm-5 for the selective oxidation of benzene to phenol with N2O [J]. Journal of Catalysis, 2000, 195(2): 287-297. doi: 10.1006/jcat.2000.2994
[49] PIRNGRUBER G D, ROY P K, PRINS R. On determining the nuclearity of iron sites in Fe-ZSM-5-a critical evaluation [J]. Physical Chemistry Chemical Physics Pccp, 2006, 8(34): 3939-3950. doi: 10.1039/B606205A
[50] DELAHAY G, VALADE D, GUZMáN-VARGAS A, et al. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods [J]. Applied Catalysis B Environmental, 2005, 55(2): 149-155. doi: 10.1016/j.apcatb.2004.07.009
[51] GONZALEZ-OLMOS R, HOLZER F, KOPINKE F D, et al. Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites [J]. Applied Catalysis A:General, 2011, 398(1/2): 44-53.
[52] MELERO J A, CALLEJA G, MARTÍNEZ F, et al. Crystallization mechanism of Fe-MFI from wetness impregnated Fe2O3–SiO2 amorphous xerogels: Role of iron species in Fenton-like processes [J]. Microporous & Mesoporous Materials, 2004, 74(1/3): 11-21.
[53] HULING S G, JONES P K, LEE T R. Iron Optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon [J]. Environmental Science & Technology, 2007, 41(11): 4090-4096.
[54] CRITTENDEN J, HAND D, ARORA H, et al. Design considerations for GAC treatment of organic chemicals [J]. Journal American Water Works Association - J AMER WATER WORK ASSN, 1987, 79: 74-82.
[55] KAN E, HULING S G. Effects of temperature and acidic pre-treatment on fenton-driven oxidation of mtbe-spent granular activated carbon [J]. Environmental Science & Technology, 2009, 43(5): 1493-1499.
[56] HILLING S G, KAN E, CALDWELL C, et al. Fenton-driven chemical regeneration of MTBE-spent granular activated carbon - A pilot study [J]. Journal of Hazardous Materials, 2012, 205/206(29): 55-62.
[57] HULING S G, KAN E, WINGO C. Fenton-driven regeneration of MTBE-spent granular activated carbon—Effects of particle size and iron amendment procedures [J]. Applied Catalysis B Environmental, 2009, 89(3/4): 651-658.
[58] NOH J S, SCHWARZ J A. Effect of HNO3 Treatment on the Surface Acidity of Activated Carbons [J]. Carbon, 1990, 28(5): 675-682. doi: 10.1016/0008-6223(90)90069-B
[59] LOPEZ-RAMON M V, STOECKLI F, MORENO-CASTILLA C, et al. On the characterization of acidic and basic surface sites on carbons by various techniques [J]. Carbon, 1999, 37(8): 1215-1221. doi: 10.1016/S0008-6223(98)00317-0
[60] KINOSHITA K. Carbon: Electrochemical and Physicochemical Properties[M]. John Wiley Sons New York Ny, 1988, 3-12.
[61] 范延臻, 王宝贞, 王琳, 等. 改性活性炭对有机物的吸附性能 [J]. 环境化学, 2001, 20(5): 444-448. FAN Y Z, WANG B Z, WANG L, et al. Adsorption of organic micropollutants on modified activated carbons [J]. Environmental Chemistry, 2001, 20(5): 444-448(in Chinese).
[62] HULING S G, JONES P K, ELA W P, et al. Fenton-driven chemical regeneration of MTBE-spent GAC [J]. Water Research, 2005, 39(10): 2145-2153. doi: 10.1016/j.watres.2005.03.027
[63] KIM D S. Adsorption characteristics of Fe(Ⅲ) and Fe(Ⅲ)-NTA complex on granular activated carbon [J]. Journal of Hazardous Materials, 2004, 106(1): 45-54.
[64] KARANFIL T, KITIS M, KILDUFF J E, et al. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter [J]. Environmental Science & Technology, 1999, 33(18): 3225-3233.
[65] HUANG H H, LU M C, CHEN J N, et al. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons [J]. Chemosphere, 2003.
[66] TSENG H-H, WEY M-Y. Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts [J]. Chemosphere, 2006, 62(5): 756-766. doi: 10.1016/j.chemosphere.2005.04.077
[67] BOODT M D, HAYES M H B, HERBILLON A. Soil colloids and their associations in aggregates[M]. 1990: Springer US.
[68] REED B E, VAUGHAN R, JIANG L. As(Ⅲ), As(Ⅴ), Hg, and Pb removal by Fe-oxide impregnated activated carbon [J]. Journal of Environmental Engineering, 2000, 126(9): 869-873. doi: 10.1061/(ASCE)0733-9372(2000)126:9(869)
[69] HIDING S G, HWANG S. Iron amendment and Fenton oxidation of MTBE-spent granular activated carbon [J]. Water Research, 2010, 44(8): 2663-2671. doi: 10.1016/j.watres.2010.01.035
[70] LAAT J D, LE G T, LEGUBE B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H_2O_2 and organic compounds by Fe(Ⅱ)/H2O2 and Fe(Ⅲ)/H2O2 [J]. Chemosphere, 2004, 55(5): 715-723. doi: 10.1016/j.chemosphere.2003.11.021
[71] EPA U. Drinking Water Contaminants 2009. http://www.epa.gov/safewater/contaminants/index.html.
[72] EPA U. Interim Drinking Water Health Advisory for Perchlorate. 2008. http://www.epa.gov/waterscience/(EPA 822-R-08-025).
[73] HWANG S, HULING S G, KO S. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers [J]. Chemosphere, 2010, 78(5): 563-568. doi: 10.1016/j.chemosphere.2009.11.005
[74] LEBRERO R, LóPEZ J C, LEHTINEN I, et al. Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter [J]. Chemosphere, 2016, 144: 97-106. doi: 10.1016/j.chemosphere.2015.08.017
[75] JOYE S, KLEINDIENST S, PEñA-MONTENEGRO T D. SnapShot: Microbial Hydrocarbon Bioremediation [J]. Cell, 2018, 172(6): 1336-1336.el. doi: 10.1016/j.cell.2018.02.059
[76] XU X, ZHOU H, CHEN X, et al. Biodegradation potential of polycyclic aromatic hydrocarbons by immobilized Klebsiella sp. in soil washing effluent [J]. Chemosphere, 2019, 223(MAY): 140-147.
[77] GE J, HUANG G, HUANG J, et al. Mechanism and kinetics of organic matter degradation based on particle structure variation during pig manure aerobic composting [J]. Journal of Hazardous Materials, 2015, 292(15): 19-26.
[78] ALFONSO-GORDILLO G, FLORES-ORTIZ C M, MORALES-BARRERA L, et al. Biodegradation of methyl tertiary butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor: kinetic study, metabolite identification and toxicity bioassays [J]. PLOS ONE, 2016, 11(12): e0167494. doi: 10.1371/journal.pone.0167494
[79] VAINBERG S, TOGNA A P, SUTTON P M, et al. Treatment of MTBE-Contaminated Water in Fluidized Bed Bioreactor [J]. Journal of Environmental Engineering, 2002, 128(9): 842-851. doi: 10.1061/(ASCE)0733-9372(2002)128:9(842)
[80] LYEW D, GUIOT S R, MONOT F, et al. Comparison of different support materials for their capacity to immobilize Mycobacterium austroafricanum IFP 2012 and to adsorb MtBE [J]. Enzyme & Microbial Technology, 2007, 40(6): 1524-1530.
[81] PONGKUA W, DOLPHEN R, THIRAVETYAN P. Bioremediation of gaseous methyl tert-butyl ether by combination of sulfuric acid modified bagasse activated carbon-bone biochar beads and Acinetobacter indicus screened from petroleum contaminated soil [J]. Chemosphere, 2020, 239: 124724. doi: 10.1016/j.chemosphere.2019.124724
[82] NAKATSU C H, HRISTOVA K, HANADA S, et al. Methylibium petrolelphilum gen. nov. , sp nov. , a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria [J]. International Journal of Systematic & Evolutionary Microbiology, 2006, 56(Pt 5): 983-989.
[83] MüLLER R, ROHWERDER T, HARMS H. Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108 [J]. Microbiology (Reading, England), 2008, 154: 1414-21. doi: 10.1099/mic.0.2007/014159-0
[84] 何延青, 刘俊良, 杨平, 等. 微生物固定化技术与载体结构的研究 [J]. 环境科学, 2004, 25(s1): 103-106. HE Y Q, LIU J L, YANG P, et al. Study on immobilization technology and carrier structure of microorganism [J]. Environmental Science, 2004, 25(s1): 103-106(in Chinese).
[85] YANG S, LI L, XIAO T, et al. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation [J]. Applied Surface Science, 2016, 383(15): 142-150.
[86] EL-SHAFEY E I, ALI S N F, AL-BUSAFI S, et al. Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal [J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2713-2724. doi: 10.1016/j.jece.2016.05.015
[87] PONGKUA W, DOLPHEN R, THIRAVETYAN P. Effect of functional groups of biochars and their ash content on gaseous methyl tert-butyl ether removal [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 558: 531-537. doi: 10.1016/j.colsurfa.2018.09.018
[88] PONGKUA W, DOLPHEN R, THIRAVETYAN P. Removal of gaseous methyl tert-butyl ether using bagasse activated carbon pretreated with chemical agents [J]. Journal of Chemical Technology & Biotechnology, 2019, 94(5): 1551-1558.
[89] FU D, SINGH R P, YANG X, et al. Sediment in-situ bioremediation by immobilized microbial activated beads: Pilot-scale study [J]. Journal of Environmental Management, 2018, 226(11): 62-69.
[90] LIU S-H, LIN H-H, LAI C-Y, et al. Microbial community in a pilot-scale biotrickling filter with cell-immobilized biochar beads and its performance in treating toluene-contaminated waste gases [J]. International Biodeterioration & Biodegradation, 2019, 144: 104743.
[91] GUISADO I M, PURSWANI J, GONZALEZ-LOPEZ J, et al. Physiological and genetic screening methods for the isolation of methyl tert-butyl ether-degrading bacteria for bioremediation purposes [J]. International Biodeterioration & Biodegradation, 2015, 97: 67-74.
[92] WOZNIAK-KARCZEWSKA M, LISIECKI P, BIALAS W, et al. Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms [J]. The ence of the Total Environment, 2019, 671(7): 948-958.
[93] HAN M F, WANG C, FU Y. Treatment of hydrophobic volatile organic compounds using two-liquid phase biofilters [J]. Science of the Total Environment, 2018, 640-641(11): 1447-1454.
[94] JOYE S B, KLEINDIENST S, GILBERT J A, et al. Responses of microbial communities to hydrocarbon exposures [J]. Oceanography, 2016, 29(3): 136-149. doi: 10.5670/oceanog.2016.78
[95] CAICEDO F, ESTRADA J M, SILVA J P, et al. Effect of packing material configuration and liquid recirculation rate on the performance of a biotrickling filter treating VOCs [J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2299-2306.
[96] WANG H, HO L, LEWIS D M, et al. Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins [J]. Water Research, 2007, 41(18): 4262-4270. doi: 10.1016/j.watres.2007.05.057
[97] MULLER R H, ROHWERDER T, HARMS H. Carbon conversion efficiency and limits of productive bacterial degradation of methyl tert-butyl ether and related compounds [J]. Applied and Environmental Microbiology, 2007.
[98] 章晶晓. 吸附—生物降解协同去除水相中MTBE的研究[D]. 杭州: 浙江工业大学, 2009. ZHANG J X. Removal of MTBE by adsorption cooperated with biodegradation[D]. Hangzhou: Zhejiang University of Technology, 2009 (inChinese).
[99] 孔令宇, 张晓健, 王占生. 生物活性炭内吸附与生物降解协同去除有机污染物 [J]. 环境科学, 2007, 28(4): 777-780. doi: 10.3321/j.issn:0250-3301.2007.04.015 KONG L Y, ZHANG X J, WANG Z S. Removal of organic pollutants by adsorption cooperated with biodegradation in BAC [J]. Environmental Science, 2007, 28(4): 777-780(in Chinese). doi: 10.3321/j.issn:0250-3301.2007.04.015
[100] HULING S, PIVETZ B. In-situ chemical oxidation [J]. Environmental Protection Agency, 2006: 61.
[101] SRA K S, THOMSON N R, BARKER J F. Persulfate treatment of dissolved gasoline compounds [J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2013, 17(1): 9-15. doi: 10.1061/(ASCE)HZ.2153-5515.0000143
[102] CUNNINGHAM J A, RAHME H, HOPKINS G D, et al. Enhanced in situ bioremediation of btex-contaminated groundwater by combined injection of nitrate and sulfate [J]. Environmental Science & Technology, 2001, 35(8): 1663-1670.
[103] USMAN M, FAURE P, RUBY C, et al. Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation [J]. Applied Catalysis B:Environmental, 2012, 117-118: 10-17. doi: 10.1016/j.apcatb.2012.01.007
[104] SHAYAN M, THOMSON N R, ARAVENA R, et al. Integrated plume treatment using persulfate coupled with microbial sulfate reduction [J]. Groundwater Monitoring & Remediation, 2018, 38(4): 45-61.
[105] HUANG K C, ZHAO Z, HOAG G E, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation [J]. Chemosphere, 2005, 61(4): 551-560. doi: 10.1016/j.chemosphere.2005.02.032
[106] PETRI B G, WATTS R J, TSITONAKI A, et al. Fundamentals of ISCO using persulfate//In Situ Chemical Oxidation for Groundwater Remediation[M]. New York: Springer, 2011:147-191.
[107] KLEIKEMPER J, SCHROTH M H, SIGLER W V, et al. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer [J]. Applied & Environmental Microbiology, 2002, 68(4): 1516-1523.
[108] MCGREGOR R, VAKILI F. The in situ treatment of BTEX, MTBE, and TBA in saline groundwater [J]. Remediation Journal, 2019, 29(4): 107-116. doi: 10.1002/rem.21616
[109] 王珊, 李珊珊, 延卫. 甲基叔丁基醚生物降解研究进展[J]. 环境科学与技术, 2017, 40(5): 88-94. WANG S, LI S S, YAN W. Study progress on biodegradation of MTBE[J]. Environmental Science and Technology, 2017, 40(5): 88-94 (in Chinese).