[1] |
CHEN W, XU J, LU S, et al. Fates and transport of PPCPs in soil receiving reclaimed water irrigation [J]. Chemosphere, 2013, 93(10): 2621-2630. doi: 10.1016/j.chemosphere.2013.09.088
|
[2] |
KOSTICH M S, BATT A L, LAZORCHAK J M. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation [J]. Environmental Pollution, 2014, 184: 354-359. doi: 10.1016/j.envpol.2013.09.013
|
[3] |
HALLING S B, NIELESEN S N, LANZKY P, et al. Occurrence fate and effects of pharmaceutical substances in the environment-A review [J]. Chemosphere, 1998, 36(1): 357-393.
|
[4] |
EBELE A J, ABDALLAH M A, HARRAD S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment [J]. Emerging Contaminants, 2017, 3: 1-16. doi: 10.1016/j.emcon.2016.12.004
|
[5] |
OAKS J L, GILBERT M, VIRANI M Z, et al. Diclofenac residues as the cause of vulture population decline in Pakistan [J]. Nature, 2004, 427(6975): 630-633. doi: 10.1038/nature02317
|
[6] |
CLEUVERS M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects [J]. Toxicology Letters, 2003, 142(3): 185-194. doi: 10.1016/S0378-4274(03)00068-7
|
[7] |
LETZEL M, METZNER G, LETZEL T. Exposure assessment of the pharmaceutical diclofenac based on long-term measurements of the aquatic input [J]. Environment International, 2009, 35(2): 363-368. doi: 10.1016/j.envint.2008.09.002
|
[8] |
ALVAIINO T, SUAREZ S, KATSOU E, et al. Removal of PPCPs from the sludge supernatant in a one stage nitritation/anammox process [J]. Water Research, 2015, 68: 701-709. doi: 10.1016/j.watres.2014.10.055
|
[9] |
ALVARINO T, SUAREZ S, LEMA J M, et al. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors [J]. Journal of Hazardous Materials, 2014, 278: 506-513. doi: 10.1016/j.jhazmat.2014.06.031
|
[10] |
LIU F F, ZHAO J, WANG S, et al. Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes [J]. Environmental Science & Technology, 2014, 48(22): 13197-13206.
|
[11] |
KATSUKI K, HIROE H, YOSHIMASA W. Elimination of Selected Acidic Pharmaceuticals from Municipal Wastewater by an Activated Sludge System and Membrane Bioreactors [J]. Environmental Science and Technology, 2007, 41(10): 3708-3714. doi: 10.1021/es061684z
|
[12] |
QUINTANA B J, WEISS S, REEMTSMA T. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor [J]. Water Research, 2005, 39(12): 2654-2664. doi: 10.1016/j.watres.2005.04.068
|
[13] |
BAE S, KIM D, LEE W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation [J]. Applied Catalysis B:Environmental, 2013, 134-135: 93-102. doi: 10.1016/j.apcatb.2012.12.031
|
[14] |
JUSTO A, GONZALEZ O, ACENA J, et al. Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone [J]. Journal of Hazardous Materials, 2013, 263: 268-274. doi: 10.1016/j.jhazmat.2013.05.030
|
[15] |
KIM I Y, KIM M K, YOON Y, et al. Kinetics and degradation mechanism of clofibric acid and diclofenac in UV photolysis and UV/H2O2 reaction [J]. Desalination and Water Treatment, 2014, 52(31-33): 6211-6218. doi: 10.1080/19443994.2013.817507
|
[16] |
RIZZO L, MERIC S, KASSINOS D, et al. Degradation of diclofenac by TiO2 photo-catalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays [J]. Water Research, 2009, 43(4): 979-988. doi: 10.1016/j.watres.2008.11.040
|
[17] |
AGUILARLIRA G Y, ALVAREZROMERO G A, ZAMORASUAREZ A, et al. New insights on diclofenac electrochemistry using graphite as working electrode [J]. Journal of Electroanalytical Chemistry, 2017, 794: 182-188. doi: 10.1016/j.jelechem.2017.03.050
|
[18] |
NADDEO V, BELGIORNO D, RICCO D, et al. Degradation of diclofenac during sonolysis, ozonation and their simultaneous application [J]. Ultrasonics Sonochemistry, 2009, 16(6): 790-794. doi: 10.1016/j.ultsonch.2009.03.003
|
[19] |
NADDEO V, BELGIORNO V, KASSINOS D, et al. Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters [J]. Ultrasonics Sonochemistry, 2010, 17(1): 179-185. doi: 10.1016/j.ultsonch.2009.04.003
|
[20] |
NIE E, YANG M, YANG X Y, et al. Degradation of diclofenac by ultrasonic irradiation: Kinetic studies and degradation pathways [J]. Chemosphere, 2014, 113: 165-170. doi: 10.1016/j.chemosphere.2014.05.031
|
[21] |
NISAR J, SAYED M, KHAN F U, et al. Gamma–irradiation induced degradation of diclofenac in aqueous solution: kinetics, role of reactive species and influence of natural water parameters [J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2573-2584. doi: 10.1016/j.jece.2016.04.034
|
[22] |
DEISTER U, WARNECK P. Photooxidation of SO2−3 in Aqueous Solution [J]. Journal of Physical Chemistry, 1990, 94: 2191-2198. doi: 10.1021/j100368a084
|
[23] |
FISCHER M, WAENECK P. Photodecomposition and Photooxidation of Hydrogen Sulfite in Aqueous Solution [J]. Journal of Physical Chemistry, 1996, 100: 15111-15117. doi: 10.1021/jp953236b
|
[24] |
ZHANG L, CHEN L, XIAO M, et al. Enhanced decolorization of Orange Ⅱ solutions by the Fe(Ⅱ)-sulfite system under xenon lamp irradiation [J]. Industrial & Engineering Chemistry Research, 2013, 52(30): 10089-10094.
|
[25] |
袁亚男. 过渡金属活化亚硫酸盐体系氧化有机污染物的研究 [D]. 武汉: 武汉大学, 2018.
YUAN Y. Oxidation of organic compounds in the transition metal ions-activated sulfite systems [D]. Wuhan: Wuhan University, 2018 (in Chinese).
|
[26] |
孙波. NaHSO3活化KMnO4快速氧化水中微量有机污染物的效能与机理 [D]. 哈尔滨: 哈尔滨工业大学, 2017.
SUN B. Kinetics and mechanisms on the fast degradation of micro-organic contaminants by bisulfite activated permanganate [D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese).
|
[27] |
YUAN Y, LOU T, XU J, et al. Enhanced oxidation of aniline using Fe(Ⅲ)-S(Ⅳ) system: Role of different oxysulfur radicals [J]. Chemical Engineering Journal, 2019, 362: 183-189. doi: 10.1016/j.cej.2019.01.010
|
[28] |
ZHOU D N, YUAN Y A, YANG S J, et al. Roles of oxysulfur radicals in the oxidation of Acid Orange 7 in the Fe(Ⅲ)-sulfite system [J]. Journal of Sulfur Chemistry, 2015, 36: 373-384. doi: 10.1080/17415993.2015.1028939
|
[29] |
XIAO Q, WANG T, YU S, et al. Influence of UV lamp, sulfur(Ⅳ) concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications [J]. Water Research, 2017, 111: 288-296. doi: 10.1016/j.watres.2017.01.018
|
[30] |
CHEN L, PENG X Z, LIU J H, et al. Decolorization of Orange Ⅱ in Aqueous solution by an Fe(Ⅱ)/sulfite system: Replacement of Persulfate [J]. Industrial Engineering Chemistry Research, 2012, 51: 13632-13638. doi: 10.1021/ie3020389
|
[31] |
张立. Fe(Ⅲ)/S(Ⅳ)体系降解四溴双酚A效能及机理研究 [D]. 武汉: 华中科技大学, 2019.
ZHANG L. Study on the degradation of tetrabromobisphenol a by Fe(Ⅲ)/S(Ⅳ) system [D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
|
[32] |
LENTE G, FABIAN L. Kinetics and mechanism of the oxidation of sulfur(Ⅳ) by iron(Ⅲ) at metal ion excess [J]. Journal of the Chemical Society, Dalton Transactions, 2002, 5: 778-784.
|
[33] |
BUXTION G V, MCGOWAN S, SALMIN G A, et al. A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(Ⅳ): A pulse and γ-radiolysis study [J]. Atmospheric Environment, 1996, 30(14): 2483-2493. doi: 10.1016/1352-2310(95)00473-4
|
[34] |
WARNECK P, ZIAJKA J. Reaction mechanism of the iron(Ⅲ)-catalyzed autoxidation of bisulfite in aqueous solution: steady state description for benzene as radical scavenger [J]. Berichte der Bunsen-Gesellschaft für physikalische Chemie, 1995, 99: 59-65.
|
[35] |
HERRMANN H, A REESE, R ZELLNER. Time-resolved UV/VIS diode array absorption spectroscopy of SO⋅−x (x=3, 4, 5) radical anions in aqueous solution [J]. Journal of Molecular Structure, 1995, 348(15): 183-186.
|
[36] |
GRGICC I, POZNICC M, BIZJAK M. S(Ⅳ) Autoxidation in atmospheric liquid water: The role of Fe(Ⅱ) and the effect of oxalate [J]. Journal of Atmospheric Chemistry, 1999, 33(1): 89-102. doi: 10.1023/A:1006141913681
|
[37] |
GRAEDEL T E, WESCHLER C J. Chemistry within aqueous atmospheric aerosols and raindrops [J]. Reviews of Geophysics, 1981, 19(4): 505-39. doi: 10.1029/RG019i004p00505
|
[38] |
BUXTON G V, MALONE T N, SALMON G A. Oxidation of glyoxal initiated by OH in-oxygenated aqueous solution [J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93(16): 2889-2891. doi: 10.1039/a701468f
|
[39] |
MCELROY W J, WAYGOOD S J. Kinetics of the reactions of SO−4 radical with SO−4 , S2O2−8 , H2O, and Fe2+ [J]. Journal of the Chemical Society Faraday Transactions, 1990, 84(14): 2557-2564.
|
[40] |
XU J, DING W, WU F, et al. Rapid catalytic oxidation of arsenite to arsenate in an iron(III)/sulfite system under visible light [J]. Applied Catalysis B:Environmental, 2016, 186(5): 56-61.
|
[41] |
DU J, GUO W, WANG H, et al. Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: Kinetics, mechanisms, and pathways [J]. Water Research, 2018, 138(1): 323-332.
|
[42] |
HUIE R E, NETA P. Rate constants for some oxidations of S(IV) by radicals in aqueous solutions [J]. Atmospheric Environment, 1987, 21(8): 1743-1747. doi: 10.1016/0004-6981(87)90113-2
|
[43] |
HUIE R E, CLIFTON C L, ALTSTEIN N. A pulse radiolysis and flash photolysis study of the radicals SO⋅−2 , SO⋅−3 , SO⋅−4 and SO⋅−5 [J]. Radiation Physics and Chemistry, 1989, 33(4): 361-370.
|
[44] |
HUSS A, LIM P. K, Eckert C. A. Oxidation of aqueous sulfur dioxide. 2. High-pressure studies and proposed reaction mechanisms [J]. Journal of Physical Chemistry, 1982, 86: 4229-4233. doi: 10.1021/j100218a028
|
[45] |
WANG, H, WANG S, LIU Y, et al. Degradation of diclofenac by Fe(Ⅱ)-activated bisulfite: Kinetics, mechanism and transformation products [J]. Chemosphere, 2019, 237: 124518. doi: 10.1016/j.chemosphere.2019.124518
|
[46] |
NETA P, HUIE R E, ROSS A B, Rate Constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17: 1027-1284.
|
[47] |
ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants [J]. Environmental Science and Technology, 2004, 38: 3705-3712. doi: 10.1021/es035121o
|
[48] |
邹景. 羟胺对Fe2+/过硫酸盐体系的强化效能与机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016.
ZOU J. Enhanced effectiveness and mechanism of Fe2+/persulfate system with hydroxylamine[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese).
|