[1] RAO P. Flash photolysis of seawater [J]. Current Science, 1973, 42(17): 599.
[2] ZAFIRIOU O C. Sources and reactions of OH and daughter radicals in seawater [J]. Journal of Geophysical Research, 1974, 79(30): 4491-4497. doi: 10.1029/JC079i030p04491
[3] PARKER K M, MITCH W A. Halogen radicals contribute to photooxidation in coastal and estuarine waters [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(21): 5868-5873. doi: 10.1073/pnas.1602595113
[4] JOE-WONG C, SCHLESINGER D R, CHOW A T, et al. Sea level rise produces abundant organobromines in salt-affected coastal wetlands [J]. Geochemical Perspectives Letters, 2019, 10: 31-35.
[5] PARKER K M, REICHWALDT E S, GHADOUANI A, et al. Halogen radicals promote the photodegradation of microcystins in estuarine systems [J]. Environmental Science & Technology, 2016, 50(16): 8505-8513.
[6] JIN R, ZHENG M, LAMMEL G, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment [J]. Progress in Energy and Combustion Science, 2020, 76: 100803. doi: 10.1016/j.pecs.2019.100803
[7] ZHAO Q, FANG Q, LIU H, et al. Halide-specific enhancement of photodegradation for sulfadiazine in estuarine waters: Roles of halogen radicals and main water constituents [J]. Water Research, 2019, 160: 209-216. doi: 10.1016/j.watres.2019.05.061
[8] GUO K, WU Z, SHANG C, et al. Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water [J]. Environmental Science & Technology, 2017, 51(18): 10431-10439.
[9] LEI Y, CHENG S, LUO N, et al. Rate constants and mechanisms of the reactions of Cl and Cl2•− with trace organic contaminants [J]. Environmental Science & Technology, 2019, 53(19): 11170-11182.
[10] ZHANG R, MENG T, HUANG C H, et al. PPCP degradation by chlorine-UV processes in ammoniacal water: New reaction insights, kinetic modeling, and DBP formation [J]. Environmental Science & Technology, 2018, 52(14): 7833-7841.
[11] JIANG J, HAN J, ZHANG X. Nonhalogenated aromatic DBPs in drinking water chlorination: A gap between NOM and halogenated aromatic DBPs [J]. Environmental Science & Technology, 2020, 54(3): 1646-1656.
[12] 耿利鸣, 马广才, 尉小旋, 等. 卤代有机污染物抑制甲状腺激素代谢酶活性的研究进展 [J]. 生态毒理学报, 2019, 14(4): 14-22. GENG L M, MA G C, WEI X X, et al. Inhibition of metabolic activities of thyroid hormones by halogenated organic contaminants [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 14-22(in Chinese).
[13] 林坤德, 陈艳秋, 袁东星. 新型污染物卤代咔唑的环境行为及生态毒理效应 [J]. 环境科学, 2016, 37(4): 1576-1583. LIN D K, CHEN Y Q, YUAN D X. Environmental behaviors and ecotoxicology of the emerging contaminants polyhalogenated carbazoles [J]. Environmental Science, 2016, 37(4): 1576-1583(in Chinese).
[14] XIANG Y Y, FANG J Y, SHANG C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process [J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069
[15] LERI A C, MAYER L M, THORNTON K R, et al. A marine sink for chlorine in natural organic matter [J]. Nature Geoscience, 2015, 8: 620-624. doi: 10.1038/ngeo2481
[16] BUXTON G V, BYDDER M, SALMON G A, et al. The reactivity of chlorine atoms in aqueous solution. Part III. The reactions of Cl· with solutes [J]. Physical Chemistry Chemical Physics, 2000, 2(2): 237-245. doi: 10.1039/a907133d
[17] BUXTON G V, WANG J, SALMON G A. Rate constants for the reactions of NO3·-, SO4·- and Cl· radicals with formate and acetate esters in aqueous solution [J]. Physical Chemistry Chemical Physics, 2001, 3(13): 2618-2621. doi: 10.1039/b101932p
[18] WICKTOR F, DONATI A, HERRMANN H, et al. Laser-based spectroscopic and kinetic investigations of reactions of the Cl atom with oxygenated hydrocarbons in aqueous solution [J]. Physical Chemistry Chemical Physics, 2003, 5(12): 2562-2572. doi: 10.1039/b212666d
[19] ALEGRE M L, GERONES M, ROSSO J A, et al. Kinetic study of the reactions of chlorine atoms and Cl2·- radical anions in aqueous solutions. 1. reaction with benzene [J]. The Journal of Physical Chemistry A, 2000, 104(14): 3117-3125. doi: 10.1021/jp9929768
[20] MARTIRE D O, ROSSO J A, BERTOLOTTI S, et al. Kinetic study of the reactions of chlorine atoms and Cl2·- radical anions in aqueous solutions. II. toluene, benzoic acid, and chlorobenzene [J]. The Journal of Physical Chemistry A, 2001, 105(22): 5385-5392. doi: 10.1021/jp004630z
[21] HASEGAWA K, NETA P. Rate constants and mechanisms of reaction of Cl2·- radicals [J]. The Journal of Physical Chemistry, 1978, 82(8): 854-857. doi: 10.1021/j100497a003
[22] ADAMS G E, ALDRICH J E, BISBY R H, et al. Selective free radical reactions with proteins and enzymes: reactions of inorganic radical anions with amino acids [J]. Radiation Research, 1972, 49(2): 278-289. doi: 10.2307/3573266
[23] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808
[24] MERENYI G, LIND J. Reaction mechanism of hydrogen abstraction by the bromine atom in water [J]. Journal of the American Chemistry Society, 1994, 116(17): 7872-7876. doi: 10.1021/ja00096a050
[25] ALFASSI Z B, HUIE R E, MARGUET S, et al. Rate constants for reactions of iodine atoms in solution [J]. International Journal of Chemistry Kinetics, 1995, 27(2): 181-188. doi: 10.1002/kin.550270208
[26] 郑珊珊, 李田田, 王晶, 等. 芳香族化合物与水合电子水相反应速率常数的QSAR模型研究 [J]. 环境化学, 2019, 38(5): 1005-1013. ZHENG S S, LI T T, WANG J, et al. QSAR models for predicting the aqueous reaction rate constants of aromatic with hydrated electrons [J]. Environmental Chemistry, 2019, 38(5): 1005-1013(in Chinese).
[27] FANJ J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system [J]. Environmental Science & Technology, 2014, 48(3): 1859-1868.
[28] ALFASSI Z B, MOSSERI S, NETA P. Reactivities of chlorine atoms and peroxyl radical formed in the radiolysis of dichloromethane [J]. The Journal of Physical Chemistry, 1989, 93(4): 1380-1385. doi: 10.1021/j100341a040
[29] LI C, ZHENG S S, LI T T, et al. Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways [J]. Water Research, 2019, 151: 468-477. doi: 10.1016/j.watres.2018.12.010
[30] FRISCH M J, TRUCKS G W, SEHLEGEL H B, et a1. Gaussian 09, revision a. 02[CP] . Wallingford, CT: Gaussian, Inc, 2009.
[31] ZHANG Y, WANG J, CHEN J, et al. Phototransformation of 2, 3-dibromopropyl-2, 4, 6-tribromophenyl ether (DPTE) in natural waters: Important roles of dissolved organic matter and chloride ion [J]. Environmental Science & Technology, 2018, 52(18): 10490-10499.
[32] SOPER-HOPPER M T, PETROV A S, HOWARD J N, et al. Collision cross section predictions using 2-dimensional molecular descriptors [J]. Chemical Communications, 2017, 53: 7624-7627. doi: 10.1039/C7CC04257D
[33] XIAO R, YE T, WEI Z, et al. Quantitative structure−activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical [J]. Environmental Science & Technology, 2015, 49: 13394-13402.
[34] TODESCHINI R, GRAMATICA P. 3D-modelling and Prediction by WHIM Descriptors. Part 6. Application of WHIM Descriptors in QSAR Studies [J]. Molecular Informatics, 1997, 16(2): 107-192.
[35] YANG C, SHAO Y H, ZHI X Y, et al. Semisynthesis and quantitative structure-activity relationship (QSAR) study of some cholesterol-based hydrazone derivatives as insecticidal agents [J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(17): 4806-4812.
[36] YANGJEH A H. QSAR study of the 5-HT1A receptor affinities of aryl piperazines using a genetic algorithm–artificial neural network model [J]. Monatshefte für Chemie Chemical Monthly, 2009, 140(5): 523-530.
[37] JOSE L. VELAZQUEZ-L J C, et al. Estimation of 2D autocorrelation descriptors and 2D Monte Carlo descriptors as a tool to build up predictive models for acetylcholinesterase (AChE) inhibitory activity [J]. Chemometrics and Intelligent Laboratory Systems, 2019, 184: 14-21. doi: 10.1016/j.chemolab.2018.11.008
[38] GOKHALE N, JAIN S. QSAR studies on thiosemicarbazone derivatives as an anticancer agent [J]. International Journal of Pharmacy Teaching & Practices, 2015, 6(2): 2111-2119.
[39] FATEMI M H, DOROSTKAR F. QSAR prediction of D2 receptor antagonistic activity of 6-methoxy benzamides [J]. European Journal of Medicinal Chemistry, 2010, 45(11): 4856-4862. doi: 10.1016/j.ejmech.2010.07.056
[40] USMAN B, MAAROF H, ABDALLAH H H, et al. Computational evaluation of the effect of structural parameters of 3-flouro thiophene and 3-thiophene malonic acid on corrosion inhibition efficiency of mild steel in acidic media [J]. International Journal of Electrochemical Science, 2015, 10: 3223-3229.
[41] BORONOVÁA K, LEHOTAY J, HROBONOVÁ K, et al. Study of physicochemical interaction of aryloxyaminopropanol derivatives with teicoplanin and vancomycin phases in view of quantitative structure-property relationship studies [J]. Journal of Chromatography A, 2013, 1301: 38-47. doi: 10.1016/j.chroma.2013.05.046
[42] SAAVEDRA L M, ROMANELLI G P, ROZO C E, et al. The quantitative structure–insecticidal activity relationships from plant derived compounds against chikungunya and zika Aedes aegypti (Diptera: Culicidae) vector [J]. Science of the Total Environment, 2018, 610-611: 937-943. doi: 10.1016/j.scitotenv.2017.08.119
[43] PEREIRA F, LATINO D A R S, AIRES-DE-SOUSA J. Estimation of mayr electrophilicity with a quantitative structure−property relationship approach using empirical and dft descriptors [J]. The Journal of Organic Chemistry, 2011, 76(22): 9312-9319. doi: 10.1021/jo201562f
[44] GONZÁlLEZ P M, GÁNDARA Z, FALL Y, et al. Radial distribution function descriptors for predicting affinity for vitamin D receptor [J]. European Journal of Medicinal Chemistry, 2008, 43(7): 1360-1365. doi: 10.1016/j.ejmech.2007.10.020