[1] ZUCCATO E, CASTIGLIONI S, BAGNATI R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment [J]. Journal of Hazardous Materials, 2010, 179(1-3): 1042-1048. doi: 10.1016/j.jhazmat.2010.03.110
[2] GOTHWAL R, SHASHIDHAR T. Antibiotic pollution in the environment: A review [J]. Clean–Soil, Air, Water, 2015, 43(4): 479-489. doi: 10.1002/clen.201300989
[3] CHARUAUD L, JARDE E, JAFFREZIC A, et al. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate [J]. Journal of Hazardous Materials, 2019, 361(5): 169-186.
[4] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[5] SARMAH A K, MEYER M T, BOXALL A B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
[6] GEVAO B, SEMPLE K T, JONES K C. Bound pesticide residues in soils: A review [J]. Environmental Pollution, 2000, 108(1): 3-14. doi: 10.1016/S0269-7491(99)00197-9
[7] SCHAEFFER A, KAESTNER M, TRAPP S. A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence [J]. Environmental Sciences Europe, 2018, 30: 1-14. doi: 10.1186/s12302-017-0129-6
[8] LI W C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil [J]. Environmental Pollution, 2014, 187: 193-201. doi: 10.1016/j.envpol.2014.01.015
[9] LUO Y, XU L, RYSZ M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China [J]. Environmental Science & Technology, 2011, 45(5): 1827-1833.
[10] GAO L H, SHI Y L, LI W H, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6): 665-671. doi: 10.1016/j.chemosphere.2011.11.019
[11] WU D, HUANG Z T, YANG K, et al. Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China [J]. Environmental Science & Technology, 2015, 49(7): 4122-4128.
[12] WEI R C, GE F, HUANG S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China [J]. Chemosphere, 2011, 82(10): 1408-1414. doi: 10.1016/j.chemosphere.2010.11.067
[13] SZYMANSKA U, WIERGOWSKI M, SOLTYSZEWSK I, et al. Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives [J]. Microchemical Journal, 2019, 147: 729-740. doi: 10.1016/j.microc.2019.04.003
[14] SCHAFHAUSER B H, KRISTOFCO L A, DE OLIVEIRA C M R, et al. Global review and analysis of erythromycin in the environment: occurrence, bioaccumulation and antibiotic resistance hazards [J]. Environmental Pollution, 2018, 238: 440-451. doi: 10.1016/j.envpol.2018.03.052
[15] HU X G, ZHOU Q X, LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China [J]. Environmental Pollution, 2010, 158(9): 2992-2998. doi: 10.1016/j.envpol.2010.05.023
[16] MARTINEZ-CARBALLO E, GONZALEZ-BARREIRO C, SCHARF S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria [J]. Environmental Pollution, 2007, 148(2): 570-579. doi: 10.1016/j.envpol.2006.11.035
[17] LU X, LI Y, THUNDERS M, et al. Effect of enrofloxacin on the proteome of earthworms [J]. Science of the Total Environment, 2018, 616: 531-542.
[18] MIGLIORE L, COZZOLINO S, FIORI M. Phytotoxicity to and uptake of enrofloxacin in crop plants [J]. Chemosphere, 2003, 52(7): 1233-1244. doi: 10.1016/S0045-6535(03)00272-8
[19] YANG X, LI Y, WANG X. Effects of ciprofloxacin exposure on the earthworm Eisenia fetida [J]. Environmental Pollution, 2020, 262: 1-9.
[20] DONG Lr, GAO J, XIE X, et al. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida [J]. Chemosphere, 2012, 89(1): 44-51. doi: 10.1016/j.chemosphere.2012.04.010
[21] LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review [J]. Environmental Pollution, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003
[22] JECHALKE S, HEUER H, SIEMENS J, et al. Fate and effects of veterinary antibiotics in soil [J]. Trends in Microbiology, 2014, 22(9): 536-545. doi: 10.1016/j.tim.2014.05.005
[23] CHEN Q L, AN X L, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil [J]. Environment International, 2016, 92/93: 1-10. doi: 10.1016/j.envint.2016.03.026
[24] MUNIR M, XAGORARAKI I. Levels of antibiotic resistance genes in manure, biosolids, and fertilized soil [J]. Journal of Environmental Quality, 2011, 40(1): 248-255. doi: 10.2134/jeq2010.0209
[25] MUNIR M, WONG K, XAGORARAKI I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan [J]. Water Research, 2011, 45(2): 681-693. doi: 10.1016/j.watres.2010.08.033
[26] IPPOLITO G, LEONE S, LAURIA F N, et al. Methicillin-resistant Staphylococcus aureus: the superbug [J]. International Journal of Infectious Diseases, 2010, 14: S7-S11.
[27] YAMAMOTO T, WAN T, KHOKHLOVA O, et al. Methicillin-resistant Staphylococcus Aureus in community settings: spread of drug resistance and uncontrollable infections[J]. 2019, 2(4): 115-124.
[28] PHAM T D M, ZIORA Z M, BLASKOVICH M A T. Quinolone antibiotics [J]. Medchemcomm, 2019, 10(10): 1719-1739. doi: 10.1039/C9MD00120D
[29] LI W H, SHI Y L, GAO L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China [J]. Chemosphere, 2012, 89(11): 1307-1315. doi: 10.1016/j.chemosphere.2012.05.079
[30] BAI Y W, MENG W, XU J, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China [J]. Environmental Science-Processes & Impacts, 2014, 16(3): 586-593.
[31] ZOU S C, XU W H, ZHANG R J, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011, 159(10): 2913-2920. doi: 10.1016/j.envpol.2011.04.037
[32] TONG L, HUANG S B, WANG Y X, et al. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China [J]. Science of the Total Environment, 2014, 497: 180-187.
[33] BARNES K K, KOLPIN D W, FURLONG E T, et al. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States - I) Groundwater [J]. Science of the Total Environment, 2008, 402(2/3): 192-200.
[34] WU X L, XIANG L, YAN Q Y, et al. Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China [J]. Science of the Total Environment, 2014, 487: 399-406. doi: 10.1016/j.scitotenv.2014.04.015
[35] SHI Y L, GAO L H, LI W H, et al. Investigation of fluoroquinolones, sulfonamides and macrolides in long-term wastewater irrigation soil in Tianjin, China [J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(4): 857-861. doi: 10.1007/s00128-012-0761-1
[36] XIE Y f, LI X W, WANG J F, et al. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China [J]. Science of the Total Environment, 2012, 430: 126-131. doi: 10.1016/j.scitotenv.2012.04.071
[37] YANG Y Y, ZHAO J L, LIU Y S, et al. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination [J]. Science of the Total Environment, 2018, 616: 816-823.
[38] FICK J, SOEDERSTROM H, LINDBERG R H, et al. Contamination of surface, ground, and drinking water from pharmaceutical production [J]. Environmental Toxicology and Chemistry, 2009, 28(12): 2522-2527. doi: 10.1897/09-073.1
[39] LIANG X M, CHEN B W, NIE X P, et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China [J]. Chemosphere, 2013, 92(11): 1410-1416. doi: 10.1016/j.chemosphere.2013.03.044
[40] ZHOU L J, YING G G, LIU S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China [J]. Science of the Total Environment, 2013, 444: 183-195. doi: 10.1016/j.scitotenv.2012.11.087
[41] SCHAUSS K, FOCKS A, HEUER H, et al. Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems [J]. Trac-Trends in Analytical Chemistry, 2009, 28(5): 612-618. doi: 10.1016/j.trac.2009.02.009
[42] KIM S-C, CARLSON K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices [J]. Environmental Science & Technology, 2007, 41(1): 50-57.
[43] BARTELT-HUNT S, SNOW D D, DAMON-POWELL T, et al. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities [J]. Journal of Contaminant Hydrology, 2011, 123(3/4): 94-103.
[44] LI Y W, WU X L, MO C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River delta area, southern China [J]. Journal of Agricultural & Food Chemistry, 2011, 59(13): 7268-7276.
[45] CHEN K, ZHOU J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China [J]. Chemosphere, 2014, 95: 604-612. doi: 10.1016/j.chemosphere.2013.09.119
[46] CHEN H, JING L, TENG Y, et al. Characterization of antibiotics in a large-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks [J]. Science of the Total Environment, 2018, 618: 409-418. doi: 10.1016/j.scitotenv.2017.11.054
[47] WEI R C, GE F, ZHANG L L, et al. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China [J]. Chemosphere, 2016, 144: 2377-2383. doi: 10.1016/j.chemosphere.2015.10.126
[48] 汤雨晴, 叶倩, 郑维义. 抗生素类药物的研究现状和进展 [J]. 国外医药(抗生素分册), 2019, 40(4): 295-301. TANG Y Q, YE Q, ZHENG W Y. Research status and development of antibiotics [J]. World Notes on Antibiotics, 2019, 40(4): 295-301(in Chinese).
[49] LI C, CHEN J Y, WANG J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment [J]. Science of the Total Environment, 2015, 521: 101-107.
[50] GAO L H, SHI Y L, LI W H, et al. Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai, China [J]. Environmental Science and Pollution Research, 2015, 22(15): 11360-11371. doi: 10.1007/s11356-015-4230-3
[51] PAN M, WONG C K C, CHU L M. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River delta, southern China [J]. Journal of Agricultural & Food Chemistry, 2014, 62(46): 11062-11069.
[52] 王冲, 罗义, 毛大庆. 土壤环境中抗生素的来源、转归、生态风险以及消减对策 [J]. 环境化学, 2014, 33(1): 19-29. doi: 10.7524/j.issn.0254-6108.2014.01.005 WANG C, LUO Y, MAO D Q. Sources, fate, ecological risks and mitigation strategies of antibiotics in the soil environment [J]. Environmental Chemistry, 2014, 33(1): 19-29(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.01.005
[53] HOELTGE S, KREUZIG R. Laboratory testing of sulfamethoxazole and its metabolite acetyl-sulfamethoxazole in soil [J]. Clean-Soil Air Water, 2007, 35(1): 104-110. doi: 10.1002/clen.200600019
[54] JUNGE T, CLAßEN N, SCHäFFER A, et al. Fate of the veterinary antibiotic 14C-difloxacin in soil including simultaneous amendment of pig manure with the focus on non-extractable residues [J]. Journal of Environmental Science and Health Part B, 2012, 47(9): 858-868. doi: 10.1080/03601234.2012.693868
[55] 伊丽丽, 焦文涛, 陈卫平. 不同抗生素在剖面土壤中的吸附特征 [J]. 环境化学, 2013, 32(12): 2357-2363. doi: 10.7524/j.issn.0254-6108.2013.12.020 YI L L, JIAO W T, CHEN W P. Adsorption characteristics of three types of antibiotics in the soil profiles [J]. Environmental Chemistry, 2013, 32(12): 2357-2363(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.12.020
[56] ANDRIAMALALA A, VIEUBLE-GONOD L, DUMENY V, et al. Fate of sulfamethoxazole, its main metabolite N-ac-sulfamethoxazole and ciprofloxacin in agricultural soils amended or not by organic waste products [J]. Chemosphere, 2018, 191: 607-615. doi: 10.1016/j.chemosphere.2017.10.093
[57] D'ALESSIO M, DURSO L M, MILLER D N, et al. Environmental fate and microbial effects of monensin, lincomycin, and sulfamethazine residues in soil [J]. Environmental Pollution, 2019, 246: 60-68. doi: 10.1016/j.envpol.2018.11.093
[58] PARK J Y, HUWE B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils [J]. Environmental Pollution, 2016, 213: 561-570. doi: 10.1016/j.envpol.2016.01.089
[59] CONDE-CID M, FERREIRA-COELHO G, FERNANDEZ-CALVINO D, et al. Single and simultaneous adsorption of three sulfonamides in agricultural soils: Effects of pH and organic matter content [J]. Science of the Total Environment, 2020, 744: 1-14.
[60] GOULAS A, SABOURIN L, ASGHAR F, et al. Explaining the accelerated degradation of ciprofloxacin, sulfamethazine, and erythromycin in different soil exposure scenarios by their aqueous extractability [J]. Environmental Science and Pollution Research, 2018, 25(16): 16236-16245. doi: 10.1007/s11356-018-1834-4
[61] PAN M, CHU L M. Adsorption and degradation of five selected antibiotics in agricultural soil [J]. Science of the Total Environment, 2016, 545: 48-56.
[62] ZHANG Y, HU S, ZHANG H, et al. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application [J]. Science of the Total Environment, 2017, 607: 1348-1356.
[63] LIU F, YING G G, YANG J F, et al. Dissipation of sulfamethoxazole, trimethoprim and tylosin in a soil under aerobic and anoxic conditions [J]. Environmental Chemistry, 2010, 7(4): 370-376. doi: 10.1071/EN09160
[64] YANG J F, YING G G, ZHOU L J, et al. Dissipation of oxytetracycline in soils under different redox conditions [J]. Environmental Pollution, 2009, 157(10): 2704-2709. doi: 10.1016/j.envpol.2009.04.031
[65] RIAZ L, MAHMOOD T, YANG Q X, et al. Bacteria-assisted removal of fluoroquinolones from wheat rhizospheres in an agricultural soil [J]. Chemosphere, 2019, 226: 8-16. doi: 10.1016/j.chemosphere.2019.03.081
[66] SCHMIDT B, EBERT J, LAMSHOEFT M, et al. Fate in soil of 14C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic [J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2008, 43(1): 8-20.
[67] MEHRTENS A, LICHA T, BROERS H P, et al. Tracing veterinary antibiotics in the subsurface-A long-term field experiment with spiked manure [J]. Environmental Pollution, 2020, 265: 1-14.
[68] HAMSCHER G, PAWELZICK H T, HOPER H, et al. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure [J]. Environmental Toxicology & Chemistry, 2005, 24(4): 861-868.
[69] BALZER F, ZUEHLKE S, HANNAPPEL S. Antibiotics in groundwater under locations with high livestock density in Germany [J]. Water Science and Technology-Water Supply, 2016, 16(5): 1361-1369. doi: 10.2166/ws.2016.050
[70] BLACKWELL P A, KAY P, BOXALL A B A. The dissipation and transport of veterinary antibiotics in a sandy loam soil [J]. Chemosphere, 2007, 67(2): 292-299. doi: 10.1016/j.chemosphere.2006.09.095
[71] DODGEN L K, UEDA A, WU X, et al. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs [J]. Environmental Pollution, 2015, 198: 144-153. doi: 10.1016/j.envpol.2015.01.002
[72] CARTER L J, HARRIS E, WILLIAMS M, et al. Fate and uptake of pharmaceuticals in soil-plant systems [J]. Journal of Agricultural and Food Chemistry, 2014, 62(4): 816-825. doi: 10.1021/jf404282y
[73] WU X Q, DODGEN L K, CONKLE J L, et al. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review [J]. Science of the Total Environment, 2015, 536: 655-666. doi: 10.1016/j.scitotenv.2015.07.129
[74] WU X Q, ERNST F, CONKLE J L, et al. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables [J]. Environment International, 2013, 60: 15-22. doi: 10.1016/j.envint.2013.07.015
[75] SENGUPTA A, SARKAR D, DAS P, et al. Tetracycline uptake and metabolism by vetiver grass (Chrysopogon zizanioides L. Nash) [J]. Environmental Science & Pollution Research, 2016, 23(24): 24880-24889.
[76] MATHEWS S, REINHOLD D. Biosolid-borne tetracyclines and sulfonamides in plants [J]. Environmental Science & Pollution Research, 2013, 20(7): 4327-4338.
[77] SIDHU H, O'CONNOR G, OGRAM A, et al. Bioavailability of biosolids-borne ciprofloxacin and azithromycin to terrestrial organisms: Microbial toxicity and earthworm responses [J]. Science of the Total Environment, 2019, 650: 18-26. doi: 10.1016/j.scitotenv.2018.09.004
[78] HUANG R X, WEN B, PEI Z G, et al. Accumulation, subcellular distribution and toxicity of copper in earthworm (Eisenia fetida) in the presence of ciprofloxacin [J]. Environmental Science & Technology, 2009, 43(10): 3688-3693.
[79] MARENGO J R, KOK R A, OBRIEN K, et al. Aerobic biodegradation of 14C-sarafloxacin hydrochloride in soil [J]. Environmental Toxicology & Chemistry, 1997, 16(3): 462-471.
[80] CARSTENS K L, GROSS A D, MOORMAN T B, et al. Sorption and photodegradation processes govern distribution and fate of sulfamethazine in freshwater-sediment microcosms [J]. Environmental Science & Technology, 2013, 47(19): 10877-10883.
[81] DUDLEY S, SUN C, JIANG J, et al. Metabolism of sulfamethoxazole in Arabidopsis thaliana cells and cucumber seedlings [J]. Environmental Pollution, 2018, 242: 1748-1757. doi: 10.1016/j.envpol.2018.07.094
[82] KAESTNER M, NOWAK K M, MILTNER A, et al. Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil-a synthesis [J]. Critical Reviews in Environmental Science & Technology, 2014, 44(19): 2107-2171.
[83] CAO S Q, WANG S F, ZHAO Y Y, et al. Fate of bisphenol S (BPS) and characterization of non-extractable residues in soil: Insights into persistence of BPS [J]. Environment International, 2020, 143: 105908-105908. doi: 10.1016/j.envint.2020.105908
[84] YAO Y, WANG B, HE Y J, et al. Fate of 4-bromodiphenyl ether (BDE3) in soil and the effects of co-existed copper [J]. Environmental Pollution, 2020, 261: 1-9.
[85] GULKOWSKA A, SANDER M, HOLLENDER J, et al. Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability [J]. Environmental Science & Technology, 2013, 47(13): 6916-6924.
[86] 曾跃春, 高彦征, 凌婉婷. 土壤中有机污染物的形态及植物可利用性 [J]. 土壤通报, 2009, 40(6): 1479-1484. ZENG Y C, GAO Y Z, LING W T. The residual forms and plant availabilities of organic pollutants in soils [J]. Chinese Journal of Soil Science, 2009, 40(6): 1479-1484(in Chinese).
[87] LI J Y, YE Q F, GAN J. Influence of organic amendment on fate of acetaminophen and sulfamethoxazole in soil [J]. Environmental Pollution, 2015, 206: 543-550. doi: 10.1016/j.envpol.2015.08.019
[88] SITTIG S, KASTEEL R, GROENEWEG J, et al. Long-term sorption and sequestration dynamics of the antibiotic sulfadiazine: a batch study [J]. Journal of Environmental Quality, 2012, 41(5): 1497-1506. doi: 10.2134/jeq2011.0467
[89] DEC J, HAIDER K, RANGASWAMY V, et al. Formation of soil-bound residues of cyprodinil and their plant uptake [J]. Journal of Agricultural & Food Chemistry, 1997, 45(2): 514-520.
[90] SUN F F, KOLVENBACH B A, NASTOLD P, et al. Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems [J]. Environmental Science & Technology, 2014, 48(24): 14291-14299.
[91] GUO X R, LIU Y H, SUN F F, et al. Fate of 14C-bisphenol F isomers in an oxic soil and the effects of earthworm [J]. Science of the Total Environment, 2019, 657: 254-261. doi: 10.1016/j.scitotenv.2018.12.032
[92] GU J, JING Y, MA Y, et al. Effects of the earthworm Metaphire guillelmi on the mineralization, metabolism, and bound-residue formation of tetrabromobisphenol A (TBBPA) in soil [J]. Science of the Total Environment, 2017, 595: 528-536. doi: 10.1016/j.scitotenv.2017.03.273
[93] SHAN J, WANG Y F, WANG L H, et al. Effects of the geophagous earthworm Metaphire guillelmi on sorption, mineralization, and bound-residue formation of 4-nonylphenol in an agricultural soil [J]. Environmental Pollution, 2014, 189: 202-207. doi: 10.1016/j.envpol.2014.03.007
[94] HEISE J, HOELTGE S, SCHRADER S, et al. Chemical and biological characterization of non-extractable sulfonamide residues in soil [J]. Chemosphere, 2006, 65(11): 2352-2357. doi: 10.1016/j.chemosphere.2006.04.084
[95] GEVAO B, MORDAUNT C, SEMPLE K T, et al. Bioavailability of nonextractable (bound) pesticide residues to earthworms [J]. Environmental Science & Technology, 2001, 35(3): 501-507.
[96] BAO Y Y, LI Y X, PAN C R. Effects of the removal of soil extractable oxytetracycline fractions on its bioaccumulation in earthworm and horsebean [J]. Water Air and Soil Pollution, 2018, 229(3): 1-12.
[97] 顾鑫. 土壤中14C-红霉素的归趋及其结合残留生物有效性研究[D]. 杭州: 浙江大学, 2019, 77. GU X. Fate of 14C-erythromycin in soils and bioavailability of its bound residues[J]. Hangzhou: Zhejiang University, 2019, 77.