[1] |
LI S, KIM Y, CHEKLI L, et al. Impact of reverse nutrient diffusion on membrane biofouling in fertilizer-drawn forward osmosis[J]. Journal of Membrane Science, 2017, 539: 108 − 115. doi: 10.1016/j.memsci.2017.05.074
|
[2] |
CODAY B D, YAFFE B G M, XU P, et al. Rejection of trace organic compounds by forward osmosis membranes: A literature review[J]. Environmental Science & Technology, 2014, 48(7): 3612 − 3624.
|
[3] |
XIE M, ZHENG M, COOPER P, et al. Osmotic dilution for sustainable greenwall irrigation by liquid fertilizer: Performance and implications[J]. Journal of Membrane Science, 2015, 494: 32 − 38. doi: 10.1016/j.memsci.2015.07.026
|
[4] |
WARSINGER D M, CHAKRABORTY S, TOW E W, et al. A review of polymeric membranes and processes for potable water reuse[J]. Progress in Polymer Science, 2018, 81: 209 − 237. doi: 10.1016/j.progpolymsci.2018.01.004
|
[5] |
马英, 冉美惠, 谷战英, 等. 正渗透膜对水中重金属的处理效果研究[J]. 工业水处理, 2017, 37(11): 65 − 69. doi: 10.11894/1005-829x.2017.37(11).065
|
[6] |
PHUNTSHO S, SHON H K, HONG S, et al. Fertiliser drawn forward osmosis desalination: The concept, performance and limitations for fertigation[J]. Reviews in Environmental Science and Bio-Technology, 2012, 11(2): 147 − 168. doi: 10.1007/s11157-011-9259-2
|
[7] |
PHUNTSHO S, SHON H K, MAJEED T, et al. Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination[J]. Environmental Science & Technology, 2012, 46(8): 4567 − 4575.
|
[8] |
ADNAN M, KHAN S J, MANZOOR K, et al. Performance evaluation of fertilizer draw solutions for forward osmosis membrane bioreactor treating domestic wastewater[J]. Process Safety and Environmental Protection, 2019, 127: 133 − 140. doi: 10.1016/j.psep.2019.05.006
|
[9] |
CHEKLI L, KIM Y, PHUNTSHO S, et al. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions[J]. Journal of Environmental Management, 2017, 187: 137 − 145.
|
[10] |
KIM Y, LI S, CHEKLI L, et al. Assessing the removal of organic micro-pollutants from anaerobic membrane bioreactor effluent by fertilizer-drawn forward osmosis[J]. Journal of Membrane Science, 2017, 533: 84 − 95. doi: 10.1016/j.memsci.2017.03.027
|
[11] |
KIM J E, KUNTZ J, JANG A, et al. Techno-economic assessment of fertiliser drawn forward osmosis process for greenwall plants from urban wastewater[J]. Process Safety and Environmental Protection, 2019, 127: 180 − 188. doi: 10.1016/j.psep.2019.05.014
|
[12] |
KIM Y, LI S, CHEKLI L, et al. Influence of fertilizer draw solution properties on the process performance and microbial community structure in a side-stream anaerobic fertilizer-drawn forward osmosis – ultrafiltration bioreactor[J]. Bioresource Technology, 2017, 240: 149 − 156. doi: 10.1016/j.biortech.2017.02.098
|
[13] |
ZOU S Q, HE Z. Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes[J]. Water Research, 2016, 99: 235 − 243. doi: 10.1016/j.watres.2016.04.067
|
[14] |
XIANG X X, ZOU S Q, HE Z. Energy consumption of water recovery from wastewater in a submerged forward osmosis system using commercial liquid fertilizer as a draw solute[J]. Separation and Purification Technology, 2017, 174: 432 − 438. doi: 10.1016/j.seppur.2016.10.052
|
[15] |
POTHAK N, FORTUNATO L, LI S, et al. Evaluating the effect of different draw solutes in a baffled osmotic membrane bioreactor-microfiltration using optical coherence tomography with real wastewater[J]. Bioresource Technology, 2018, 263: 306 − 316. doi: 10.1016/j.biortech.2018.04.123
|
[16] |
CORZO B, DE LA TORRE T, SANS C, et al. Long-term evaluation of a forward osmosis-nanofiltration demonstration plant for wastewater reuse in agriculture[J]. Chemical Engineering Journal, 2018, 338: 383 − 391. doi: 10.1016/j.cej.2018.01.042
|
[17] |
CHEKLI L, KIM J E, EL SALIBY I, et al. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution[J]. Separation and Purification Technology, 2017, 181: 18 − 28. doi: 10.1016/j.seppur.2017.03.008
|
[18] |
MORROW C P, CHILDRESS A E. Evidence, determination, and implications of membrane-independent limiting flux in forward osmosis systems[J]. Environmental Science & Technology, 2019, 53(8): 4380 − 4388.
|
[19] |
LEE S. Performance comparison of spiral-wound and plate-and-frame forward osmosis membrane module[J]. Membranes, 2020, 10(11): 1 − 17.
|
[20] |
IM S J, JANG A. Long-term performance and initial fouling evaluation of an open-loop plate and frame forward osmosis element using wastewater treatment plant secondary effluent as a feed solution[J]. Journal of Water Process Engineering, 2020, 33: 101077. doi: 10.1016/j.jwpe.2019.101077
|
[21] |
BAE C, PARK K, HEO H, et al. Quantitative estimation of internal concentration polarization in a spiral wound forward osmosis membrane module compared to a flat sheet membrane module[J]. Korean Journal of Chemical Engineering, 2017, 34(3): 844 − 853. doi: 10.1007/s11814-016-0307-z
|
[22] |
FIELD R W, SIDDIWQUI F A, ANG P, et al. Analysis of the influence of module construction upon forward osmosis performance[J]. Desalination, 2018, 431: 151 − 156. doi: 10.1016/j.desal.2017.09.003
|
[23] |
CORZO B, DE LA TORRE T, SANS C, et al. Evaluation of draw solutions and commercially available forward osmosis membrane modules for wastewater reclamation at pilot scale[J]. Chemical Engineering Journal, 2017, 326: 1 − 8. doi: 10.1016/j.cej.2017.05.108
|
[24] |
PHUNTSHO S, SAHEBI S, MAJEED T, et al. Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process[J]. Chemical Engineering Journal, 2013, 231: 484 − 496. doi: 10.1016/j.cej.2013.07.058
|
[25] |
WANG Y, ZHANG M K, LIU Y Q, et al. Quantitative evaluation of concentration polarization under different operating conditions for forward osmosis process[J]. Desalination, 2016, 398: 106 − 113. doi: 10.1016/j.desal.2016.07.015
|
[26] |
BAI R Z, WANG J, JIA H, et al. Hydraulics characteristics of forward osmosis membrane module boundary based on FBG sensing technology: Hydraulic properties and operating condition optimization[J]. Chemosphere, 2019, 226: 553 − 564. doi: 10.1016/j.chemosphere.2019.03.155
|
[27] |
JUNG D H, LEE J, KIM D Y, et al. Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions[J]. Desalination, 2011, 277(1-3): 83 − 91. doi: 10.1016/j.desal.2011.04.001
|
[28] |
GULIED M, AL MOMANI F, KHRAISHEH M, et al. Influence of draw solution type and properties on the performance of forward osmosis process: Energy consumption and sustainable water reuse[J]. Chemosphere, 2019, 233: 234 − 244. doi: 10.1016/j.chemosphere.2019.05.241
|
[29] |
ZOU S Q, HE Z. Electrodialysis recovery of reverse-fluxed fertilizer draw solute during forward osmosis water treatment[J]. Chemical Engineering Journal, 2017, 330: 550 − 558. doi: 10.1016/j.cej.2017.07.181
|
[30] |
NGUYEN T-T, KOOK S, LEE C, et al. Critical flux-based membrane fouling control of forward osmosis: Behavior, sustainability, and reversibility[J]. Journal of Membrane Science, 2019, 570-571: 380 − 393. doi: 10.1016/j.memsci.2018.10.062
|
[31] |
TANG C Y Y, SHE Q H, LAY W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science, 2010, 354(1-2): 123 − 133. doi: 10.1016/j.memsci.2010.02.059
|
[32] |
XUE W C, YAMAMOTO K, TOBINO T, et al. Modeling prediction of the process performance of seawater-driven forward osmosis for nutrients enrichment: Implication for membrane module design and system operation[J]. Journal of Membrane Science, 2016, 515: 7 − 21. doi: 10.1016/j.memsci.2016.05.037
|
[33] |
LEE J, GHAFFOUR N. Predicting the performance of large-scale forward osmosis module using spatial variation model: Effect of operating parameters including temperature[J]. Desalination, 2019, 469: 12.
|
[34] |
PHUNTSHO S, VIGNESWARAN S, KANDASAMY J, et al. Influence of temperature and temperature difference in the performance of forward osmosis desalination process[J]. Journal of Membrane Science, 2012, 415: 734 − 744.
|
[35] |
WANG Q, ZHOU Z Y, LI J Q, et al. Modeling and measurement of temperature and draw solution concentration induced water flux increment efficiencies in the forward osmosis membrane process[J]. Desalination, 2019, 452: 75 − 86. doi: 10.1016/j.desal.2018.11.001
|
[36] |
KIM Y, LEE S, SHON H K, et al. Organic fouling mechanisms in forward osmosis membrane process under elevated feed and draw solution temperatures[J]. Desalination, 2015, 355: 169 − 177. doi: 10.1016/j.desal.2014.10.041
|
[37] |
YOU S J, WANG X H, ZHONG M, et al. Temperature as a factor affecting transmembrane water flux in forward osmosis: Steady-state modeling and experimental validation[J]. Chemical Engineering Journal, 2012, 198: 52 − 60.
|
[38] |
WANG C, LI Y M, WANG Y Q. Treatment of greywater by forward osmosis technology: Role of the operating temperature[J]. Environmental Technology, 2019, 40(26): 3434 − 3443. doi: 10.1080/09593330.2018.1476595
|
[39] |
KONG F X, DONG L Q, ZHANG T, et al. Effect of reverse permeation of draw solute on the rejection of ionic nitrogen inorganics in forward osmosis: Comparison, prediction and implications[J]. Desalination, 2018, 437: 144 − 153. doi: 10.1016/j.desal.2018.03.010
|
[40] |
QIU G L, WONG G K W, TING Y P. Electrostatic interaction governed solute transport in forward osmosis[J]. Water Research, 2020: 173:115590.
|
[41] |
GAO Y, FANG Z, LIANG P, et al. Direct concentration of municipal sewage by forward osmosis and membrane fouling behavior[J]. Bioresource Technology, 2018, 247: 730 − 735. doi: 10.1016/j.biortech.2017.09.145
|
[42] |
BOO C, ELIMELECH M, HONG S. Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation[J]. Journal of Membrane Science, 2013, 444: 148 − 156. doi: 10.1016/j.memsci.2013.05.004
|
[43] |
LOTFI F, SAMALI B, HAGARE D. Cleaning efficiency of the fouled forward osmosis membranes under different experimental conditions[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4555 − 4563. doi: 10.1016/j.jece.2018.06.059
|
[44] |
YANAR N, SON M, YANG E, et al. Investigation of the performance behavior of a forward osmosis membrane system using various feed spacer materials fabricated by 3d printing technique[J]. Chemosphere, 2018, 202: 708 − 715. doi: 10.1016/j.chemosphere.2018.03.147
|
[45] |
ZHANG H M, CHENG S Y, YANG F L. Use of a spacer to mitigate concentration polarization during forward osmosis process[J]. Desalination, 2014, 347: 112 − 119. doi: 10.1016/j.desal.2014.05.026
|
[46] |
YANAR N, SON M, PARK H, et al. Bio-mimetically inspired 3d-printed honeycombed support (spacer) for the reduction of reverse solute flux and fouling of osmotic energy driven membranes[J]. Journal of Industrial and Engineering Chemistry, 2020, 83: 343 − 350. doi: 10.1016/j.jiec.2019.12.007
|
[47] |
TOW E W, RENCKEN M M, LIENHARD V J H. In situ visualization of organic fouling and cleaning mechanisms in reverse osmosis and forward osmosis[J]. Desalination, 2016, 399: 138 − 147. doi: 10.1016/j.desal.2016.08.024
|
[48] |
CHEN G, WANG Z W, LI X M, et al. Concentrating underground brine by FO process: Influence of membrane types and spacer on membrane scaling[J]. Chemical Engineering Journal, 2016, 285: 92 − 100. doi: 10.1016/j.cej.2015.09.096
|
[49] |
XIE M, TANG C Y Y, GRAY S R. Spacer-induced forward osmosis membrane integrity loss during gypsum scaling[J]. Desalination, 2016, 392: 85 − 90. doi: 10.1016/j.desal.2016.04.017
|
[50] |
CHOI Y, HWANG T M, JEONG S, et al. The use of ultrasound to reduce internal concentration polarization in forward osmosis[J]. Ultrasonics Sonochemistry, 2018, 41: 475 − 483. doi: 10.1016/j.ultsonch.2017.10.005
|
[51] |
HEIKKINEN J, KYLLONEN H, JARVELA E, et al. Ultrasound-assisted forward osmosis for mitigating internal concentration polarization[J]. Journal of Membrane Science, 2017, 528: 147 − 154. doi: 10.1016/j.memsci.2017.01.035
|
[52] |
ARJMANDIW M, PEYRAVI M, ALTAEE A, et al. A state-of-the-art protocol to minimize the internal concentration polarization in forward osmosis membranes[J]. Desalination, 2020, 480: 114355. doi: 10.1016/j.desal.2020.114355
|