[1] ANDRESEN J A, GRUNDMANN A, BESTER K. Organophosphorus flame retardants and plasticisers in surface waters [J]. Science of the Total Environment, 2004, 332(1-3): 155-166. doi: 10.1016/j.scitotenv.2004.04.021
[2] DODSON R E, PEROVICH L J, COVACI A, et al. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from california [J]. Environmental Science & Technology, 2012, 46(24): 13056-13066.
[3] YAN S H, WU H M, QIN J H, et al. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea) [J]. Environmental Pollution, 2017, 225: 559-568. doi: 10.1016/j.envpol.2017.02.071
[4] ALI N, DIRTU A C, VAN DEN EEDE N, et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment [J]. Chemosphere, 2012, 88(11): 1276-1282. doi: 10.1016/j.chemosphere.2012.03.100
[5] HE C T, ZHENG J, QIAO L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure [J]. Chemosphere, 2015, 133: 47-52. doi: 10.1016/j.chemosphere.2015.03.043
[6] SALAMOVA A, HERMANSON M H, HITES R A. Organophosphate and halogenated flame retardants in atmospheric particles from a european arctic site [J]. Environmental Science & Technology, 2014, 48(11): 6133-6140.
[7] MOLLER A, XIE Z Y, CABA A, et al. Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea [J]. Environmental Pollution, 2011, 159(12): 3660-3665. doi: 10.1016/j.envpol.2011.07.022
[8] BOLLMANN U E, MOLER A, XIE Z Y, et al. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters [J]. Water Research, 2012, 46(2): 531-538. doi: 10.1016/j.watres.2011.11.028
[9] REGNERY J, PUTTMANN W. Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany [J]. Water Research, 2010, 44(14): 4097-4104. doi: 10.1016/j.watres.2010.05.024
[10] WANG R M, TANG J H, XIE Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China [J]. Environmental Pollution, 2015, 198: 172-178. doi: 10.1016/j.envpol.2014.12.037
[11] PANTELAKI I, VOUTSA D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment [J]. Science of the Total Environment, 2019, 649: 247-263. doi: 10.1016/j.scitotenv.2018.08.286
[12] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring, 2010, 12(4): 943-951. doi: 10.1039/b921910b
[13] REEMTSMA T, QUINTANA J B, RODIL R, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate [J]. Trac-Trends in Analytical Chemistry, 2008, 27(9): 727-737. doi: 10.1016/j.trac.2008.07.002
[14] WANG Y, YAO Y, LI W, et al. A nationwide survey of 19 organophosphate esters in soils from China: Spatial distribution and hazard assessment [J]. Science of the Total Environment, 2019, 671: 528-535. doi: 10.1016/j.scitotenv.2019.03.335
[15] TAN X X, LUO X J, ZHENG X B, et al. Distribution of organophosphorus flame retardants in sediments from the Pearl River Delta in South China [J]. Science of the Total Environment, 2016, 544: 77-84. doi: 10.1016/j.scitotenv.2015.11.089
[16] KIM J W, ISOBE T, CHANG K H, et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines [J]. Environmental Pollution, 2011, 159(12): 3653-3659. doi: 10.1016/j.envpol.2011.07.020
[17] FU L, DU B, WANG F, et al. Organophosphate triesters and diester degradation products in municipal sludge from wastewater treatment plants in China: Spatial patterns and ecological implications [J]. Environmental Science & Technology, 2017, 51(23): 13614-13623.
[18] QI C D, YU G, ZHONG M M, et al. Organophosphate flame retardants in leachates from six municipal landfills across China [J]. Chemosphere, 2019, 218: 836-844. doi: 10.1016/j.chemosphere.2018.11.150
[19] LIU C S, WANG Q W, LIANG K, et al. Effects of tris (1, 3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae [J]. Aquatic Toxicology, 2013, 128: 147-157.
[20] ORGANIZATION W H. Environmental Health Criteria 209: Flame retardants: Tris-(chloropropyl) phosphate and tris-(2-chloroethyl) phosphate [J]. Geneva: WHO, 1998
[21] CRISTALE J, GARCIA VAZQUEZ A, BARATA C, et al. Priority and emerging flame retardants in rivers: Occurrence in water and sediment, Daphnia magna toxicity and risk assessment [J]. Environment International, 2013, 59: 232-243. doi: 10.1016/j.envint.2013.06.011
[22] 皮天星, 蔡磊明, 蒋金花, 等. 新型阻燃剂TCPP对斑马鱼的毒性研究 [J]. 生态毒理学报, 2016, 11(2): 247-256. PI T S, CAI L M, JIANG J H, et al. Toxicity of a new flame retardant TCPP to zebrafish [J]. Journal of Ecotoxicology, 2016, 11(2): 247-256(in Chinese).
[23] WANG Q, LAI N L S, WANG X, et al. Bioconcentration and transfer of the organophorous flame retardant 1, 3-dichloro-2-propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae [J]. Environmental Science & Technology, 2015, 49(8): 5123-5132.
[24] WANG Q, LAM J C W, MAN Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1, 3-dichloro 2-propyl phosphate (TDCPP) to zebrafish [J]. Aquatic Toxicology, 2015, 158: 108-115. doi: 10.1016/j.aquatox.2014.11.001
[25] OLIVERI A N, BAILEY J M, LEVIN E D. Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebrafish [J]. Neurotoxicology And Teratology, 2015, 52: 220-227. doi: 10.1016/j.ntt.2015.08.008
[26] WANG Q, LAM J C W, HAN J, et al. Developmental exposure to the organophosphorus flame retardant tris (1, 3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish [J]. Aquatic Toxicology, 2015, 160: 163-171. doi: 10.1016/j.aquatox.2015.01.014
[27] MCGEE S P, COOPER E M, STAPLETON H M, et al. Early zebrafish embryogenesis is susceptible to developmental TDCPP exposure [J]. Environmental Health Perspectives, 2012, 120(11): 1585-1591. doi: 10.1289/ehp.1205316
[28] LIJ H, SU G, ZOU M, et al. Effects of tris (1, 3-dichloro-2-propyl) phosphate on growth, reproduction, and gene transcription of daphnia magna at environmentally relevant concentrations [J]. Environmental Science & Technology, 2015, 49(21): 12975-12983.
[29] MEEKER J D, STAPLETON H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters [J]. Environmental Health Perspectives, 2010, 118(3): 318-323. doi: 10.1289/ehp.0901332
[30] FARHAT A, CRUMP D, CHIU S, et al. In ovo effects of two organophosphate flame retardants-TCPP and TDCPP-on pipping success, development, mrna expression, and thyroid hormone levels in chicken Embryos [J]. Toxicological Sciences, 2013, 134(1): 92-102. doi: 10.1093/toxsci/kft100
[31] NOYES P D, HAGGARD D E, GONNERMAN G D, et al. Advanced morphological-behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants [J]. Toxicological Sciences, 2015, 145(1): 177-195. doi: 10.1093/toxsci/kfv044
[32] DISHAW L V, POWERS C M, RYDE I T, et al. Is the PentaBDE replacement, tris (1, 3-dichloropropyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells [J]. Toxicology and Applied Pharmacology, 2011, 256(3): 281-289. doi: 10.1016/j.taap.2011.01.005
[33] YUAN L, LI J, ZHA J, et al. Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus) [J]. Environmental Pollution, 2016, 208: 670-677. doi: 10.1016/j.envpol.2015.10.045
[34] 顾杰, 吴江, 王宏烨, 等. 有机磷酸酯对斑马鱼的早期神经毒性作用研究 [J]. 生态毒理学报, 2019, 14(5): 152-158. Gu J, WU J, WANG H Y, et al. Study on the early neurotoxicity of organophosphate on zebrafish [J]. Journal of Ecotoxicology, 2019, 14(5): 152-158(in Chinese).
[35] LIU C, SU G, GIESY J P, et al. Acute exposure to tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP) causes hepatic inflammation and leads to hepatotoxicity in zebrafish [J]. Scientific Reports, 2016, 6: 19054. doi: 10.1038/srep19054
[36] LI F, CAO L, LI X, et al. Affinities of organophosphate flame retardants to tumor suppressor gene p53: An integrated in vitro and in silico study [J]. Toxicology Letters, 2015, 232(2): 533-541. doi: 10.1016/j.toxlet.2014.12.006
[37] LI J, GIESY J P, YU L, et al. Effects of Tris (1, 3-dichloro-2-propyl) Phosphate (TDCPP) in tetrahymena thermophila: Targeting the ribosome [J]. Scientific Reports, 2015, 5: 10562. doi: 10.1038/srep10562
[38] KRIVOSHIEV B V, DARDENNE F, BLUST R, et al. Elucidating toxicological mechanisms of current flame retardants using a bacterial gene profiling assay [J]. Toxicology In Vitro, 2015, 29(8): 2124-2132. doi: 10.1016/j.tiv.2015.09.001
[39] LIU X, CAI Y, WANG Y, et al. Effects of tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) on sex-dependent alterations of thyroid hormones in adult zebrafish [J]. Ecotoxicology and Environmental Safety, 2019, 170: 25-32. doi: 10.1016/j.ecoenv.2018.11.058
[40] LIU X, JI K, CHOI K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish [J]. Aquatic Toxicology, 2012, 114: 173-181.
[41] CHEN G, JIN Y, WU Y, et al. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption [J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 310-318. doi: 10.1016/j.etap.2015.06.021
[42] KOJIMA H, TAKEUCHI S, ITOH T, et al. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors [J]. Toxicology, 2013, 314(1): 76-83. doi: 10.1016/j.tox.2013.09.004
[43] FERNIE K J, PALACE V, PETERS L E, et al. Investigating endocrine and physiological parameters of captive american kestrels exposed by diet to selected organophosphate flame retardants [J]. Environmental Science & Technology, 2015, 49(12): 7448-7455.
[44] VAN DER VEEN I, DE BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
[45] LEE S, CHO H J, CHOI W, et al. Organophosphate flame retardants (OPFRs) in water and sediment: Occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea [J]. Marine Pollution Bulletin, 2018, 130: 105-112. doi: 10.1016/j.marpolbul.2018.03.009
[46] MEYER J, BESTER K. Organophosphate flame retardants and plasticisers in wastewater treatment plants [J]. Journal of Environmental Monitoring, 2004, 6(7): 599-605. doi: 10.1039/b403206c
[47] GRIECO S A, RAMARAO B V. Removal of TCEP from aqueous solutions by adsorption with zeolites [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2013, 434: 329-338.
[48] 严炜, 景传勇. 有机磷阻燃剂在不同含氧碳纳米管上的吸附行为 [J]. 环境化学, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003 Yan W, JING C Y. Adsorption behavior of organophosphate flame retardants on different oxygen-containing carbon nanotubes [J]. Environmental Chemistry, 2014, 33(10): 1692-1699(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.003
[49] CRISTALE J, RAMOS D D, DANTAS R F, et al. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants? [J]. Environmental Research, 2016, 144: 11-18. doi: 10.1016/j.envres.2015.10.008
[50] WU T, GAN Q, JANS U. Nucleophilic substitution of phosphorothionate ester pesticides with bisulfide (HS-) and polysulfides (Sn2-) [J]. Environmental Science & Technology, 2006, 40(17): 5428-5434.
[51] 刘佳. 有机磷酸酯阻燃剂污染现状及降解过程研究进展 [J]. 应用化工, 2018, 47(12): 2705-2710,2714. doi: 10.3969/j.issn.1671-3206.2018.12.036 LIU J. Pollution status and degradation process of organophosphate flame retardants [J]. Applied Chemical Engineering, 2018, 47(12): 2705-2710,2714(in Chinese). doi: 10.3969/j.issn.1671-3206.2018.12.036
[52] KAWAGOSHI Y, FUKUNAGA I, ITOH H. Distribution of organophosphoric acid triesters between water and sediment at a sea-based solid waste disposal site [J]. Journal of Material Cycles & Waste Management, 1999, 1(1): 53-61.
[53] SU G Y, LETCHER R J, YU H X. Organophosphate flame retardants and plasticizers in aqueous solution: pH-dependent hydrolysis, kinetics, and pathways [J]. Environmental Science & Technology, 2016, 50(15): 8103-8111.
[54] WU L, CHLADKOVA B, LECHTENFELD O J, et al. Characterizing chemical transformation of organophosphorus compounds by 13C and 2H stable isotope analysis [J]. Science of the Total Environment, 2018, 615: 20-28. doi: 10.1016/j.scitotenv.2017.09.233
[55] FANG Y, KIM E, STRATHMANN T J. Mineral and base-catalyzed hydrolysis of organophosphate flame retardants: potential major fate-controlling sink in soil and aquatic environments [J]. Environmental Science & Technology, 2018, 52(4): 1997-2006.
[56] KULKARNI S V, MARKAD V L, MELO J S, et al. Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3 [J]. Applied Microbiology and Biotechnology, 2014, 98(2): 919-929. doi: 10.1007/s00253-013-4938-2
[57] NANCHARAIAH Y V, REDDY G K K, MOHAN T V K, et al. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms [J]. Journal of Hazardous Materials, 2015, 283: 705-711. doi: 10.1016/j.jhazmat.2014.09.065
[58] RANGU S S, BASU B, MURALIDHARAN B, et al. Involvement of phosphoesterases in tributyl phosphate degradation in Sphingobium sp. strain RSMS [J]. Applied Microbiology and Biotechnology, 2016, 100(1): 461-468. doi: 10.1007/s00253-015-6979-1
[59] XIONG J, LI G, AN T. The microbial degradation of 2, 4, 6-tribromophenol (TBP) in water/sediments interface: Investigating bioaugmentation using Bacillus sp. GZT [J]. Science of the Total Environment, 2017, 575: 573-580. doi: 10.1016/j.scitotenv.2016.09.017
[60] RANGU S S, MURALIDHARAN B, TRIPATHI S C, et al. Tributyl phosphate biodegradation to butanol and phosphate and utilization by a novel bacterial isolate, Sphingobium sp strain RSMS [J]. Applied Microbiology and Biotechnology, 2014, 98(5): 2289-2296. doi: 10.1007/s00253-013-5158-5
[61] BERNE C, MONTJARRET B, GUOUNTTI Y, et al. Tributyl phosphate degradation by serratia odorifera [J]. Biotechnology Letters, 2004, 26(8): 681-686. doi: 10.1023/B:BILE.0000023030.69207.c0
[62] 刘佳. 有机磷酸酯类阻燃剂化学氧化及微生物降解过程的机理研究[D]. 北京: 北京科技大学, 2019. Liu J. Mechanism of chemical oxidation and microbial degradation of organophosphate flame retardants [D]. Beijing : University of Science and Technology Beijing, 2019 (in Chinese).
[63] WEI K, YIN H, PENG H, et al. Bioremediation of triphenyl phosphate in river water microcosms: Proteome alteration of Brevibacillus brevis and cytotoxicity assessments [J]. Science of the Total Environment, 2019, 649: 563-570. doi: 10.1016/j.scitotenv.2018.08.342
[64] HOU R, LUO X, LIU C, et al. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems: Kinetics, pathway and degradation mechanisms [J]. Environmental Pollution, 2019, 254: 113040. doi: 10.1016/j.envpol.2019.113040
[65] JURGENS S S, HELMUS R, WAAIJERS S L, et al. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge [J]. Chemosphere, 2014, 111: 238-242. doi: 10.1016/j.chemosphere.2014.04.016
[66] 卫昆. 磷酸三苯酯的微生物降解机制及其降解产物毒性研究[D]. 广州: 华南理工大学, 2018. WEI K. Microbial degradation mechanism of triphenyl phosphate and toxicity of its degradation products [D]. Guangzhou: South China University of Technology, 2018 (in Chinese).
[67] TAKAHASHI S, KAWASHIMA K, KAWASAKI M, et al. Enrichment and characterization of chlorinated organophosphate ester-degrading mixed bacterial cultures [J]. Journal of Bioscience and Bioengineering, 2008, 106(1): 27-32. doi: 10.1263/jbb.106.27
[68] TAKAHASHI S, MIURA K, ABE K, et al. Complete detoxification of tris (2-chloroethyl) phosphate by two bacterial strains: Sphingobium sp. strain TCM1 and Xanthobacter autotrophicus strain GJ10 [J]. Journal of Bioscience and Bioengineering, 2012, 114(3): 306-311. doi: 10.1016/j.jbiosc.2012.04.010
[69] TAKAHASHI S, OBANA Y, OKADA S, et al. Complete detoxification of tris(1, 3-dichloro-2-propyl) phosphate by mixed two bacteria, Sphingobium sp. strain TCM1 and Arthrobacter sp. strain PY1 [J]. Journal of Bioscience and Bioengineering, 2012, 113(1): 79-83. doi: 10.1016/j.jbiosc.2011.08.020
[70] ABE K, YOSHIDA S, SUZUKI Y, et al. Haloalkylphosphorus hydrolases purified from Sphingomonas sp Strain TDK1 and Sphingobium sp strain TCM1 [J]. Applied and Environmental Microbiology, 2014, 80(18): 5866-5873. doi: 10.1128/AEM.01845-14
[71] ABE K, MUKAI N, MOROOKA Y, et al. An atypical phosphodiesterase capable of degrading haloalkyl phosphate diesters from Sphingobium sp. strain TCM1 [J]. Scientific Reports, 2017, 7(1): 2842. doi: 10.1038/s41598-017-03142-9
[72] TAKAHASHI S, KATANUMA H, ABE K, et al. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris (2-chloroethyl) phosphate, in Sphingobium sp strain TCM1 [J]. Applied Microbiology and Biotechnology, 2017, 101(5): 2153-2162. doi: 10.1007/s00253-016-7991-9
[73] LIU T, LU S Y, WANG R W, et al. Behavior of selected organophosphate flame retardants (OPFRs) and their influence on rhizospheric microorganisms after short-term exposure in integrated vertical-flow constructed wetlands (IVCWs) [J]. Science of the Total Environment, 2020, 710: 136403. doi: 10.1016/j.scitotenv.2019.136403
[74] DIAO Z H, LIU J J, HU Y X, et al. Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: Reactivity, stability, products and mechanism [J]. Separation and Purification Technology, 2017, 184: 374-383. doi: 10.1016/j.seppur.2017.05.016
[75] HE H, JI Q, GAO Z, et al. Degradation of tri (2-chloroisopropyl) phosphate by the UV/H2O2 system: Kinetics, mechanisms and toxicity evaluation [J]. Chemosphere, 2019, 236: 124388. doi: 10.1016/j.chemosphere.2019.124388
[76] LOHSE S, ROSENTRETER J J. Photooxidation of aqueous trichloroethylene using a buoyant photocatalyst with reaction progress monitored via micro-headspace GC/MS [J]. Microchemical Journal, 2006, 82(1): 66-72. doi: 10.1016/j.microc.2005.09.002
[77] WATTS M J, LINDEN K G. Photooxidation and subsequent biodegradability of recalcitrant tri-alkyl phosphates TCEP and TBP in water [J]. Water Research, 2008, 42(20): 4949-4954. doi: 10.1016/j.watres.2008.09.020
[78] WATTS M J, LINDEN K G. Advanced oxidation kinetics of aqueous trialkyl phosphate flame retardants and plasticizers [J]. Environmental Science & Technology, 2009, 43(8): 2937-2942.
[79] SANTORO D, RAISEE M, MOGHADDAMI M, et al. Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV-H2O2 photoreactors using computational fluid dynamics [J]. Environmental Science & Technology, 2010, 44(16): 6233-6241.
[80] RUAN X C, AI R, JIN X, et al. Photodegradation of Tri (2-chloroethyl) phosphate in aqueous solution by UV/H2O2 [J]. Water Air and Soil Pollution, 2013, 224(1): 1406. doi: 10.1007/s11270-012-1406-z
[81] YUAN X J, LACORTE S, CRISTALE J, et al. Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments [J]. Separation and Purification Technology, 2015, 156: 1028-1034. doi: 10.1016/j.seppur.2015.09.052
[82] ROCHA O R S D, DANTAS R F, NASCIMENTO JúNIOR W J, et al. Organophosphate esters removal by UV/H2O2 process monitored by 31p nuclear magnetic resonance spectroscopy [J]. Brazilian Journal of Chemical Engineering, 2018, 35(2): 521-530. doi: 10.1590/0104-6632.20180352s20160568
[83] TANG T, LU G N, WANG R, et al. Rate constants for the reaction of hydroxyl and sulfate radicals with organophosphorus esters (OPEs) determined by competition method [J]. Ecotoxicology and Environmental Safety, 2019, 170: 300-305. doi: 10.1016/j.ecoenv.2018.11.142
[84] YU X, YIN H, PENG H, et al. Degradation mechanism, intermediates and toxicology assessment of tris-(2-chloroisopropyl) phosphate using ultraviolet activated hydrogen peroxide [J]. Chemosphere, 2020, 241: 124991. doi: 10.1016/j.chemosphere.2019.124991
[85] 刘青. TiO2光催化降解水体中氯代有机磷酸酯类阻燃剂研究[D]. 南京: 南京大学, 2013. Liu Q. Photocatalytic degradation of chlorinated organophosphate flame retardants in water by TiO2 [D]. Nanjing : Nanjing University, 2013 (in Chinese).
[86] YE J, LIU J, LI C, et al. Heterogeneous photocatalysis of tris (2-chloroethyl) phosphate by UV/TiO2: Degradation products and impacts on bacterial proteome [J]. Water Research, 2017, 124: 29-38. doi: 10.1016/j.watres.2017.07.034
[87] TANG T, LU G, WANG W, et al. Photocatalytic removal of organic phosphate esters by TiO2: Effect of inorganic ions and humic acid [J]. Chemosphere, 2018, 206: 26-32. doi: 10.1016/j.chemosphere.2018.04.161
[88] ABDULLAH A M, O’SHEA K E. TiO2 photocatalytic degradation of the flame retardant tris (2-chloroethyl) phosphate (TCEP) in aqueous solution: A detailed kinetic and mechanistic study [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 377: 130-137. doi: 10.1016/j.jphotochem.2019.03.026
[89] HU H, ZHANG H X, CHEN Y, et al. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: Effect of irradiation wavelength and real water matrixes [J]. Chemical Engineering Journal, 2019, 368: 273-284. doi: 10.1016/j.cej.2019.02.190
[90] YU X, YIN H, YE J S, et al. Degradation of tris-(2-chloroisopropyl) phosphate via UV/TiO2 photocatalysis: Kinetic, pathway, and security risk assessment of degradation intermediates using proteomic analyses [J]. Chemical Engineering Journal, 2019, 374: 263-273. doi: 10.1016/j.cej.2019.05.193
[91] OU H S, LIU J, YE J S, et al. Degradation of tris (2-chloroethyl) phosphate by ultraviolet-persulfate: Kinetics, pathway and intermediate impact on proteome of Escherichia coli [J]. Chemical Engineering Journal, 2017, 308: 386-395. doi: 10.1016/j.cej.2016.09.076
[92] XU X, CHEN J, QU R, et al. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways [J]. Chemosphere, 2017, 185: 833-843. doi: 10.1016/j.chemosphere.2017.07.090
[93] YU X, YIN H, PENG H, et al. Oxidation degradation of tris-(2-chloroisopropyl) phosphate by ultraviolet driven sulfate radical: Mechanisms and toxicology assessment of degradation intermediates using flow cytometry analyses [J]. Science of the Total Environment, 2019, 687: 732-740. doi: 10.1016/j.scitotenv.2019.06.163
[94] ANTONOPOULOU M, GIANNAKAS A, BAIRAMIS F, et al. Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N, S-codoped TiO2 photocatalysts [J]. Chemical Engineering Journal, 2017, 318: 231-239. doi: 10.1016/j.cej.2016.06.124
[95] LIN J, HU H, GAO N, et al. Fabrication of GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of organophosphorus contaminant [J]. Journal of Water Process Engineering, 2020, 33: 101010. doi: 10.1016/j.jwpe.2019.101010
[96] KRUITHOF J C, KAMP P C, MARTIJN B J. UV/H2O2 treatment: A practical solution for organic contaminant control and primary disinfection [J]. Ozone-Science & Engineering, 2007, 29(4): 273-280.
[97] ANTONOPOULOU M, KARAGIANNI P, KONSTANTINOU I K. Kinetic and mechanistic study of photocatalytic degradation of flame retardant Tris (1-chloro-2-propyl) phosphate (TCPP) [J]. Applied Catalysis B:Environmental, 2016, 192: 152-160. doi: 10.1016/j.apcatb.2016.03.039