[1] WU S, HUANG S, JI L, et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag [J]. Fuel, 2014, 122: 67-75. doi: 10.1016/j.fuel.2014.01.011
[2] WU S, HUANG S, WU Y, et al. Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag [J]. Journal of the Energy Institute, 2015, 88(1): 93-103. doi: 10.1016/j.joei.2014.04.001
[3] 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展 [J]. 洁净煤技术, 2020, 26(1): 184-193. QU J S, ZHANG J B, SUN Z G, et al. Research progress on comprehensive utilization of coal gasification slag [J]. Clean Coal Technology, 2020, 26(1): 184-193(in Chinese).
[4] STEFFAN J J, BREVIK E C, BURGESS L C, et al. The effect of soil on human health: an overview [J]. European Journal of Soil Science, 2018, 69(1): 159-171. doi: 10.1111/ejss.12451
[5] 赵永彬, 吴辉, 蔡晓亮, 等. 煤气化残渣的基本特性研究 [J]. 洁净煤技术, 2015, 21(3): 110-113. ZHAO Y B, WU H, CAI X L, et al. Basic characteristics of coal gasification residue [J]. Clean Coal Technology, 2015, 21(3): 110-113(in Chinese).
[6] 王金福, 唐强, 郑妍妍, 等. 一种煤气化灰渣氧化脱碳的组合循环流化床反应器: CN105396518 A[P].[2016-03-16]. WANG J F, TANG Q, ZHENG Y Y, et al. Combined circulating fluidized bed reactor for oxidative decarburization of coal gasification ash: CN105396518 A[P]. [2016-03-16] (in Chinese).
[7] 刘坤基. 气化细渣中残碳催化石墨化研究[D]. 北京: 中国矿业大学, 2019. LIU K J. Study on catalytic graphitization of residual carbon in gasification slag[D]. Beijing: China University of Mining and Technology, 2019 (in Chinese).
[8] ZHAO S W, YAO L Y, HE H B, et al. Preparation and environmental toxicity of non-sintered ceramsite using coal gasifi cation coarse slag [J]. Archives of Environmental Protection, 2019, 45(2): 84-90.
[9] 陈志良, 陆胜勇, 毛琼晶, 等. 水平式球磨机用于POPs机械化学处置的能量传递 [J]. 环境化学, 2016, 35(10): 2134-2145. doi: 10.7524/j.issn.0254-6108.2016.10.2016031603 CHEN Z L, LU S Y, MAO Q J, et al. Energy transfer in mechanochemical treatment of POPs in a horizontal ball mill [J]. Environmental Chemistry, 2016, 35(10): 2134-2145(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.10.2016031603
[10] BASTURKCU H, ACARKAN N, GOCK E. The role of mechanical activation on atmospheric leaching of a lateritic nickel ore [J]. International Journal of Mineral Processing, 2017, 163: 1-8. doi: 10.1016/j.minpro.2017.04.001
[11] 朱红青, 沈静, 张亚光. 升温速率和氧浓度对煤表观活化能的影响 [J]. 煤炭科学技术, 2015, 43(11): 49-53,106. ZHU H Q, SHEN J, ZHANG Y G. Temperature rising rates and oxygen concentrations influerced to apparent activation energy of coal [J]. Coal Science and Technology, 2015, 43(11): 49-53,106(in Chinese).
[12] GAO J C, CHANG M R, SHEN J. Comparison of bituminous coal apparent activation energy in different heating rates and oxygen concentrations based on thermo gravimetric analysis [J]. Journal of Thermal Analysis and Calorimetry, 2017(130): 1181-1189.
[13] YU L Y, LI P S. Thermogravimetric analysis of coal and sludge co-combustion with microwave radiation dehydration [J]. Energy Institute, 2014,87(87): 220-226.
[14] 徐东耀, 肖佩林, 庄亚辉, 等. 型煤燃烧特性初探 [J]. 环境化学, 1998, 17(6): 537-541. XU D Y, XIAO P L, ZHUANG Y H, et al. Preliminary study on combustion characteristics of briquette [J]. Environmental Chemistry, 1998, 17(6): 537-541(in Chinese).
[15] YOUSAF B, LIU G, ABBAS Q, et al. Systematic investigation on combustion characteristics and emission-reduction mechanism of potentially toxic elements in biomass and biocharcoal combustion systems [J]. Applied Energy, 2017, 208: 142-157. doi: 10.1016/j.apenergy.2017.10.059
[16] 吴思萍, 赵凯, 董永胜, 等. 气化细渣浮选脱碳研究进展 [J]. 华电技术, 2020, 42(7): 81-86. doi: 10.3969/j.issn.1674-1951.2020.07.011 WU S P, ZHAO K, DONG Y S, et al. Research progress on flotation decarburization of gasified fine slag [J]. Huadian Technology, 2020, 42(7): 81-86(in Chinese). doi: 10.3969/j.issn.1674-1951.2020.07.011
[17] TANG A, SU L, LI C, et al. Effect of mechanical activation on acid leaching of kaolin residue [J]. Applied Clay Science, 2010, 48(3): 296-299. doi: 10.1016/j.clay.2010.01.019
[18] LI X H, ZHANG Y J, PAN L P, et al. Effect of mechanical activation on dissolution kinetics of neutral leach residue of zinc calcine in sulphuric acid [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5): 1512-1519. doi: 10.1016/S1003-6326(13)62624-2
[19] LIAO Z, HUANG Z, HU H, et al. Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation [J]. Bioresour Technology, 2011, 102(17): 7953-7958. doi: 10.1016/j.biortech.2011.05.067
[20] ZHOU X, WANG R, LI C, et al. Effect of high energy ball milling on the microstructure and properties of ultrafine gradient cemented carbides [J]. International Journal of Applied Ceramic Technology, 2020, 17(5): 2298-2306. doi: 10.1111/ijac.13551
[21] 邓军, 张宇轩, 赵婧昱, 等. 基于程序升温的不同粒径煤氧化活化能试验研究 [J]. 煤炭科学技术, 2019, 47(1): 214-219. DENG J, ZHANG Y X, ZHAO J Y, et al. Experiment study on oxidation and activated energy of different partical sizecoal based on programmed temperature rising [J]. Coal Science and Technology, 2019, 47(1): 214-219(in Chinese).
[22] WANG H, DLUGOGORSKI B Z, KENNEDY E M. Theoretical analysis of reaction regimes in low-temperature oxidation of coal [J]. Fuel, 1999, 78(9): 1073-1081. doi: 10.1016/S0016-2361(99)00016-2
[23] VESELOVSKI V S, TERPOGOSOVA E A. Dependence of oxidation of mineral fuels on temperature [J]. Otdl Tech Nauk, 1953, 4: 905-909.
[24] 张玉龙. 基于宏观表现与微观特性的煤低温氧化机理及其应用研究[D]. 太原: 太原理工大学, 2014. ZHANG Y L. Study on low-temperature oxidation mechanism of coal based on macroscopic behavior and microscopic characteristics and its application[D]. Taiyuan: Taiyuan University of technology, 2014 (in Chinese).
[25] KOK M V. Simultaneous thermogravimetry–calorimetry study on the combustion of coal samples: Effect of heating rate [J]. Energy Conversion and Management, 2012, 53(1): 40-44. doi: 10.1016/j.enconman.2011.08.005
[26] MENG F, YU J, TAHMASEBI A, et al. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace [J]. Energy & Fuels, 2013, 27(6): 2923-2932.
[27] LI T, SUN T, LI D. Preparation, sintering behavior, and expansion performance of ceramsite filter media from dewatered sewage sludge, coal fly ash, and river sediment [J]. Journal of Material Cycles and Waste Management, 2016, 20(1): 71-79.
[28] QIN J, CUI C, CUI X, et al. Preparation and characterization of ceramsite from lime mud and coal fly ash [J]. Construction and Building Materials, 2015, 95: 10-17. doi: 10.1016/j.conbuildmat.2015.07.106
[29] CHEN Y, SHI J, RONG H, et al. Adsorption mechanism of lead ions on porous ceramsite prepared by co-combustion ash of sewage sludge and biomass [J]. Science of the Total Environment, 2020, 702: 135017. doi: 10.1016/j.scitotenv.2019.135017
[30] XU G R, ZOU J L, LI G B. Stabilization of heavy metals in sludge ceramsite [J]. Water Research, 2010, 44(9): 2930-2938. doi: 10.1016/j.watres.2010.02.014
[31] CHENG F, WEN R, HUANG Z, et al. Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage [J]. Applied Thermal Engineering, 2017, 120: 107-114. doi: 10.1016/j.applthermaleng.2017.03.129
[32] 谢武明, 张文治, 周峰平, 等. 煤粉发泡剂对赤泥陶粒烧胀特性的影响 [J]. 环境工程学报, 2017, 11(12): 6458-6464. doi: 10.12030/j.cjee.201701130 XIE W M, ZHANG W Z, ZHOU F P, et al. Effect of pulverized coal on sintering expansion behavior of red mud ceramsite [J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6458-6464(in Chinese). doi: 10.12030/j.cjee.201701130