[1] ZHANG Y Q, LI Q F, LU Y L, et al. Hexabromocyclododecanes (HBCDDs) in surface soils from coastal cities in north China: Correlation between diastereoisomer profiles and industrial activities [J]. Chemosphere, 2016, 148: 504-510. doi: 10.1016/j.chemosphere.2016.01.051
[2] SINDIKU O, BABAYEMI O, OSIBANJO O, et al. Polybrominated diphenyl ethers listed as Stockholm Convention POPs, other brominated flame retardants and heavy metals in e-waste polymers in Nigeria [J]. Environmental Science and Pollution Research, 2015, 22(19): 14489-14501. doi: 10.1007/s11356-014-3266-0
[3] ZHANG Y W, SUN H W, LIU F, et al. Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: Diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure [J]. Chemosphere, 2013, 93(8): 1561-1568. doi: 10.1016/j.chemosphere.2013.08.004
[4] HUANG H L, WANG D, WAN W N, et al. Hexabromocyclododecanes in soils and plants from a plastic waste treatment area in North China: Occurrence, diastereomer- and enantiomer-specific profiles, and metabolization [J]. Environmental Science and Pollution Research, 2017, 24(27): 21625-21635. doi: 10.1007/s11356-017-9792-9
[5] XIANG N, CHEN L, MENG X Z, et al. Occurrence of hexabromocyclododecane (HBCD) in sewage sludge from Shanghai: Implications for source and environmental burden [J]. Chemosphere, 2015, 118: 207-212. doi: 10.1016/j.chemosphere.2014.08.058
[6] ZHANG Y W, SUN H W, ZHU H K, et al. Accumulation of hexabromocyclododecane diastereomers and enantiomers in two microalgae, Spirulina subsalsa and Scenedesmus obliquus [J]. Ecotoxicology and Environmental Safety, 2014, 104: 136-142. doi: 10.1016/j.ecoenv.2014.02.027
[7] WU T, WANG S, HUANG H L, et al. Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize [J]. Journal of Agricultural and Food Chemistry, 2012, 60(34): 8528-8534. doi: 10.1021/jf302682p
[8] LUO X J, RUAN W, ZENG Y H, et al. Trophic dynamics of hexabromocyclododecane diastereomers and enantiomers in fish in a laboratory feeding study [J]. Environmental Toxicology and Chemistry, 2013, 32(11): 2565-2570.
[9] PALACE V, PARK B, PLESKACH K, et al. Altered thyroxine metabolism in rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane (HBCD) [J]. Chemosphere, 2010, 80(2): 165-169. doi: 10.1016/j.chemosphere.2010.03.016
[10] HUANG X M, CHEN C, SHANG Y, et al. In vitro study on the biotransformation and cytotoxicity of three hexabromocyclododecane diastereoisomers in liver cells [J]. Chemosphere, 2016, 161: 251-258. doi: 10.1016/j.chemosphere.2016.07.001
[11] SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane gamma: Effect of dose, timing, route, repeated exposure, and metabolism[J]. Toxicological Sciences, 2010 , 117: 282–293.
[12] ZHANG X, HERGER A G, REN Z et al. Resistance effect of flavonols and toxicology analysis of hexabromocyclododecane based on soil-microbe-plant system [J]. Chemosphere, 2020, 257: 127248. doi: 10.1016/j.chemosphere.2020.127248
[13] HUANG H L, WANG D, WEN B, et al. Roles of maize cytochrome P450 (CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies [J]. Science of the Total Environment, 2019, 656: 364-372. doi: 10.1016/j.scitotenv.2018.11.351
[14] 武彤, 田柳, 崔建升, 等. 六溴环十二烷对映体对玉米的生理和基因损伤研究 [J]. 环境科学学报, 2018, 38(12): 4864-4872. WU T, TIAN L, CUI J S, et al. Physiological and genetic damage effects of hexabromocyclododecane enantiomers on maize [J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4864-4872(in Chinese).
[15] 崔建升, 刘颖, 武彤, 等. γ-六溴环十二烷对映体对玉米的氧化损伤 [J]. 环境化学, 2016, 35(9): 1762-1768. doi: 10.7524/j.issn.0254-6108.2016.09.2016012606 CUI J S, LIU Y, WU T, et al. Oxidative damage of γ-hexabromocyclododecane enantiomers to maize [J]. Environmental Chemistry, 2016, 35(9): 1762-1768(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016012606
[16] ZHANG X L, YANG F X, CHAO X, et al. Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell [J]. Toxicology in Vitro, 2008, 22(6): 1520-1527. doi: 10.1016/j.tiv.2008.05.006
[17] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding [J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[18] BEAUCHAMP C, FRIDOVICH I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels [J]. Analytical Biochemistry, 1971, 44(1): 276-287. doi: 10.1016/0003-2697(71)90370-8
[19] NAKANO, Y, ASADA, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology, 1981, 22(5): 867-880.
[20] JABS T, DIETRICH R A, DANGL J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide [J]. Science (New York, N. Y. ), 1996, 273(5283): 1853-1856. doi: 10.1126/science.273.5283.1853
[21] YAMAUCHI T, WATANABE K, FUKAZAWA A, et al. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions [J]. Journal of Experimental Botany, 2014, 65(1): 261-273. doi: 10.1093/jxb/ert371
[22] 刘冬峰. 砂梨对高温胁迫的响应及耐热机理研究[D]. 杭州: 浙江大学, 2014: 1-131. LIU D F. Studies on the resoponse of sand pear to high-temperature and high-tolerance mechanism[D], Hangzhou: Zhejiang University, 2014: 1-131 (in Chinese).
[23] FANG S, TAO Y, ZHANG Y Z, et al. Effects of metalaxyl enantiomers stress on root activity and leaf antioxidant enzyme activities in tobacco seedlings [J]. Chirality, 2018, 30(4): 469-474. doi: 10.1002/chir.22810
[24] LIU X L, ZHANG S Z, SHAN X Q, et al. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination [J]. Ecotoxicology and Environmental Safety, 2007, 68(2): 305-313. doi: 10.1016/j.ecoenv.2006.11.001
[25] HUANG H L, ZHANG S Z, LV J T, et al. Experimental and theoretical evidence for diastereomer- and enantiomer-specific accumulation and biotransformation of HBCD in maize roots [J]. Environmental Science & Technology, 2016, 50(22): 12205-12213.
[26] HONG H Z, LV D M, LIU W X, et al. Toxicity and bioaccumulation of three hexabromocyclododecane diastereoisomers in the marine copepod Tigriopus japonicas [J]. Aquatic Toxicology, 2017, 188: 1-9. doi: 10.1016/j.aquatox.2017.04.010
[27] 蔡珊, 黄亚梅, 张易华, 等. 花青素生理活性及其抗氧化机制 [J]. 陕西农业科学, 2018, 64(12): 40-43. doi: 10.3969/j.issn.0488-5368.2018.12.011 CAI S, HUANG Y M, ZHANG Y H, et al. Physiological activity and antioxidant mechanism of anthocyanin [J]. Shaanxi Journal of Agricultural Sciences, 2018, 64(12): 40-43(in Chinese). doi: 10.3969/j.issn.0488-5368.2018.12.011
[28] BANERJEE B D, SETH V, AHMED R S. Pesticide-induced oxidative stress: perspectives and trends [J]. Reviews on Environmental Health, 2001, 16(1): 1-40. doi: 10.1515/REVEH.2001.16.1.1
[29] XU C M, CHEN L P, CHEN S, et al. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice [J]. Annals of Applied Biology, 2020, 177(1): 61-73. doi: 10.1111/aab.12589
[30] 李志霞, 秦嗣军, 吕德国, 等. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展 [J]. 植物生理学报, 2011, 47(10): 957-966. LI Z X, QIN S J, LV D G, et al. Research progress in root respiratorymetabolism of plant and the environmental influencing factors [J]. Plant Physiology Journal, 2011, 47(10): 957-966(in Chinese).
[31] CSERESNYÉS I, RAJKAI K, TAKÁCS T. Indirect monitoring of root activity in soybean cultivars under contrasting moisture regimes by measuring electrical capacitance [J]. Acta Physiologiae Plant, 2016, 38(5): 1-21. doi: 10.1007/s11738-016-2149-z
[32] ZHANG H, LIU X L, ZHANG R X, et al. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L. ) [J]. Frontiers in Plant Science, 2017, 8: 1580. doi: 10.3389/fpls.2017.01580