[1] 赵辉, 郑有飞, 李硕, 等. 我国近地层O3污染及其风险评估研究进展 [J]. 环境化学, 2019, 38(12): 2709-2718. doi: 10.7524/j.issn.0254−6108.2019011701 ZHAO H, ZHENG Y F, LI S, et al. Research progress on ground−level O3 pollution and its risk assessment in China [J]. Environmental Chemistry, 2019, 38(12): 2709-2718(in Chinese). doi: 10.7524/j.issn.0254−6108.2019011701
[2] 李如梅, 武媛媛, 彭林, 等. 朔州市夏季环境空气中VOCs的污染特征及来源解析 [J]. 环境化学, 2017, 36(5): 984-993. doi: 10.7524/j.issn.0254−6108.2017.05.2016111603 LI R M, WU Y Y, PENG L, et al. Characteristics and sources apportionment of ambient volatile organic compounds(VOCs) in summer in Shuozhou [J]. Environmental Chemistry, 2017, 36(5): 984-993(in Chinese). doi: 10.7524/j.issn.0254−6108.2017.05.2016111603
[3] 张亮林, 潘竟虎. 中国PM2.5人口暴露风险时空格局 [J]. 中国环境科学, 2020, 40(1): 1-12. doi: 10.3969/j.issn.1000−6923.2020.01.001 ZHANG L L, PAN J H. Spatial-temporal pattern of population exposure risk to PM2.5 in China [J]. China Environmental Science, 2020, 40(1): 1-12(in Chinese). doi: 10.3969/j.issn.1000−6923.2020.01.001
[4] DI Q, WANG Y, ZANOBETTI A. Air pollution and mortality in the medicare population [J]. New England Journal of Medicine, 2017, 376(26): 1498-2522.
[5] HU H, HA S D, XU X H. Ozone and hypertensive disorders of pregnancy in Florida: Identifying critical windows of exposure [J]. Environmental Research, 2017, 153: 120-125. doi: 10.1016/j.envres.2016.12.002
[6] 洪莹莹, 翁佳烽, 谭浩波, 等. 珠江三角洲秋季典型O3污染的气象条件及贡献量化 [J]. 中国环境科学, 2021, 41(1): 1-10. doi: 10.3969/j.issn.1000−6923.2021.01.001 HONG Y Y, WENG J F, TAN H B, et al. Meteorological conditions and contribution quantification of typical ozone pollution during autumn in Pearl River Delta [J]. China Environmental Science, 2021, 41(1): 1-10(in Chinese). doi: 10.3969/j.issn.1000−6923.2021.01.001
[7] CARDELINO C A, CHAMEIDES W L. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere [J]. Journal of the Air & Waste Management Association, 1995, 45(3): 161-180.
[8] UTEMBE S R, WATSON L A, SHALLCROSS D E, et al. A common representative intermediates (CRI) mechanism for VOC degradation. part 3: development of a secondary organic aerosol module [J]. Atmospheric Environment, 2009, 43(12): 1982-1990. doi: 10.1016/j.atmosenv.2009.01.008
[9] ZHANG X M, WANG D, LIU Y, et al. Characteristics and ozone formation potential of volatile organic compounds in emissions from a typical Chinese coking plant [J]. Journal of Environmental Sciences, 2020, 95: 183-189. doi: 10.1016/j.jes.2020.03.018
[10] DU Z J, MO J H, ZHANG Y P. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China [J]. Environment International, 2014, 73: 33-45. doi: 10.1016/j.envint.2014.06.014
[11] 郭云, 蒋玉丹, 黄炳昭, 等. 我国大气PM2.5及O3导致健康效益现状分析及未来10年预测 [J]. 环境科学研究, 2021, 34(4): 1023-1032. GUO Y, JIANG Y D, HUANG B Z, et al. Health impact of PM2.5 and O3 and forecasts for next 10 years in China [J]. Research of Environmental Sciences, 2021, 34(4): 1023-1032(in Chinese).
[12] DU Z J, MO J H, ZHANG Y P, et al. Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China [J]. Building and Environment, 2014, 72: 75-81. doi: 10.1016/j.buildenv.2013.10.013
[13] WEI W, CHENG S Y, LI G H, et al. Characteristics of ozone and ozone precursors (VOCs and NOx) around a petroleum refinery in Beijing, China [J]. Journal of Environmental Sciences, 2014, 26(2): 332-342. doi: 10.1016/S1001-0742(13)60412-X
[14] WANG G, CHENG S Y, WEI W, et al. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China [J]. Atmospheric Pollution Research, 2016, 7(4): 711-724. doi: 10.1016/j.apr.2016.03.006
[15] ZHU J, WANG S S, WANG H L, et al. Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China [J]. Atmospheric Chemistry and Physics, 2020, 20(3): 1217-1232. doi: 10.5194/acp-20-1217-2020
[16] MO Z W, SHAO M, LU S H, et al. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China [J]. Science of the Total Environment, 2017, 593/594: 641-653. doi: 10.1016/j.scitotenv.2017.03.123
[17] 叶听听, 江飞, 易福金, 等. 长三角地区春季臭氧污染特征及其对冬小麦产量的影响 [J]. 环境科学研究, 2017, 30(7): 991-1000. YE T T, JIANG F, YI F J, et al. Characteristics of ozone pollution and its impact on winter wheat yield in the Yangtze River Delta in spring [J]. Research of Environmental Sciences, 2017, 30(7): 991-1000(in Chinese).
[18] TIE X X, GENG F H, PENG L, et al. Measurement and modeling of O3 variability in Shanghai, China: Application of the WRF-Chem model [J]. Atmospheric Environment, 2009, 43(28): 4289-4302. doi: 10.1016/j.atmosenv.2009.06.008
[19] HUANG C F, CHEN C H, LI L, et al. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China [J]. Atmospheric Chemistry and Physics, 2011, 11(9): 4105-4120. doi: 10.5194/acp-11-4105-2011
[20] 陆克定, 张远航, 苏杭, 等. 珠江三角洲夏季臭氧区域污染及其控制因素分析 [J]. 中国科学:化学, 2010, 40(4): 407-420. doi: 10.1360/zb2010−40−4−407 LU K D, ZHANG Y H, SU H, et al. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time [J]. Scientia Sinica (Chimica), 2010, 40(4): 407-420(in Chinese). doi: 10.1360/zb2010−40−4−407
[21] ZHANG Y L, WANG X M, ZHANG Z, et al. Sources of C2-C4 alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region [J]. Science of the Total Environment, 2015, 502: 236-245. doi: 10.1016/j.scitotenv.2014.09.024
[22] 颜敏, 尹魁浩, 梁永贤, 等. 深圳市夏季臭氧污染研究 [J]. 环境科学研究, 2012, 25(4): 411-418. YAN M, YIN K H, LIANG Y X, et al. Ozone pollution in summer in Shenzhen city [J]. Research of Environmental Sciences, 2012, 25(4): 411-418(in Chinese).
[23] ZOU Y, DENG X J, ZHU D, et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China [J]. Atmospheric Chemistry and Physics, 2015, 15(12): 6625-6636. doi: 10.5194/acp−15−6625−2015
[24] DENG Y Y, LI J, LI Y Q, et al. Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu [J]. Journal of Environmental Sciences, 2019, 75: 334-345. doi: 10.1016/j.jes.2018.05.004
[25] 徐晨曦, 陈军辉, 韩丽, 等. 成都市2017年夏季大气VOCs污染特征、臭氧生成潜势及来源分析 [J]. 环境科学研究, 2019, 32(4): 619-626. XU C X, CHEN J H, HAN L, et al. Analyses of pollution characteristics, ozone formation potential and sources of VOCs atmosphere in Chengdu city in summer 2017 [J]. Research of Environmental Sciences, 2019, 32(4): 619-626(in Chinese).
[26] 缑亚峰, 余欢, 王成, 等. PM2.5化学组成观测设计对PMF源解析结果影响综述 [J]. 环境化学, 2020, 39(7): 1744-1753. doi: 10.7524/j.issn.0254−6108.2020020301 GOU Y F, YU H, WANG C, et al. Review: Influence of PM2.5 composition measurement design on source apportionment using positive matrix factorization (PMF) [J]. Environmental Chemistry, 2020, 39(7): 1744-1753(in Chinese). doi: 10.7524/j.issn.0254−6108.2020020301
[27] LI J, HAO Y F, SIMAYI M, et al. Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals [J]. Atmospheric Chemistry and Physics, 2019, 19(9): 5905-5921. doi: 10.5194/acp−19−5905−2019
[28] 齐安安, 周小平, 雷春妮, 等. 兰州市功能区环境空气中挥发性有机物关键活性组分与来源解析 [J]. 环境化学, 2020, 39(11): 3083-3093. doi: 10.7524/j.issn.0254−6108.2019080402 QI A A, ZHOU X P, LEI C N, et al. Key active components and sources of volatile organic compounds in ambient air of Lanzhou City [J]. Environmental Chemistry, 2020, 39(11): 3083-3093(in Chinese). doi: 10.7524/j.issn.0254−6108.2019080402
[29] 李颖慧, 李如梅, 胡冬梅, 等. 太原市不同功能区环境空气中挥发性有机物特征与来源解析 [J]. 环境化学, 2020, 39(4): 920-930. doi: 10.7524/j.issn.0254−6108.2019110804 LI Y H, LI R M, HU D M, et al. Characteristics and source apportionment of ambient volatile organic compounds of different functional areas in Taiyuan City [J]. Environmental Chemistry, 2020, 39(4): 920-930(in Chinese). doi: 10.7524/j.issn.0254−6108.2019110804
[30] 王帅, 崔建升, 冯亚平, 等. 石家庄市挥发性有机物和臭氧的污染特征及源解析 [J]. 环境科学, 2020, 41(12): 5325-5335. WANG S, CUI J S, FENG Y P, et al. Characteristics and source apportionment of VOCs and O3 in Shijiazhuang [J]. Environmental Science, 2020, 41(12): 5325-5335(in Chinese).
[31] 韩丽, 陈军辉, 姜涛, 等. 基于观测模型的成都市臭氧污染敏感性研究 [J]. 环境科学学报, 2020, 40(11): 4092-4104. HAN L, CHEN J H, JIANG T, et al. Sensitivity analysis of atmospheric ozone formation to its precursors in Chengdu with an observation based model [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 4092-4104(in Chinese).
[32] 沈劲, 黄晓波, 汪宇, 等. 广东省臭氧污染特征及其来源解析研究 [J]. 环境科学学报, 2017, 37(12): 4449-4457. SHEN J, HUANG X B, WANG Y, et al. Study on ozone pollution characteristics and source apportionment in Guangdong Province [J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4449-4457(in Chinese).
[33] 石春娥, 杨关盈, 张浩, 等. 安徽省臭氧污染特征及其气象成因 [J]. 三峡生态环境监测, 2020, 5(3): 71-84. SHI C E, YANG G Y, ZHANG H, et al. Characteristics and meteorological causes of ozone pollution in Anhui Province [J]. Ecology and Environmental Monitoring of Three Gorges, 2020, 5(3): 71-84(in Chinese).
[34] 赵旭辉, 董昊, 季冕, 等. 合肥市O3污染时空变化特征及影响因素分析 [J]. 环境科学学报, 2018, 38(2): 649-660. ZHAO X H, DONG H, JI M, et al. Analysis on the spatial-temporal distribution characteristics of O3 and its influencing factors in Hefei City [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 649-660(in Chinese).
[35] 伏志强, 戴春皓, 王章玮, 等. 长沙市夏季大气臭氧生成对前体物的敏感性分析 [J]. 环境化学, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254−6108.2018042503 FU Z Q, DAI C H, WANG Z W, et al. Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha [J]. Environmental Chemistry, 2019, 38(3): 531-538(in Chinese). doi: 10.7524/j.issn.0254−6108.2018042503
[36] CARTER W P L. Development of a condensed SAPRC−07 chemical mechanism [J]. Atmospheric Environment, 2010, 44(40): 5336-5345. doi: 10.1016/j.atmosenv.2010.01.024
[37] BUZCU B, FRASER M P. Source identification and apportionment of volatile organic compounds in Houston, TX [J]. Atmospheric Environment, 2006, 40(13): 2385-2400. doi: 10.1016/j.atmosenv.2005.12.020
[38] TAN Z F, LU K D, JIANG M Q, et al. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3−VOC−NOx sensitivity [J]. Science of the Total Environment, 2018, 636: 775-786. doi: 10.1016/j.scitotenv.2018.04.286
[39] 高璟赟, 肖致美, 徐虹, 等. 2019年天津市挥发性有机物污染特征及来源 [J]. 环境科学, 2021, 42(1): 55-64. GAO J Y, XIAO Z M, XU H, et al. Characterization and source apportionment of atmospheric VOCs in Tianjin in 2019 [J]. Environmental Science, 2021, 42(1): 55-64(in Chinese).
[40] 王雨, 王丽涛, 杨光, 等. 邯郸市秋季大气挥发性有机物污染特征 [J]. 环境科学研究, 2019, 32(7): 1134-1142. WANG Y, WANG L T, YANG G, et al. Characteristics of volatile organic compounds in autumn in Handan city, China [J]. Research of Environmental Sciences, 2019, 32(7): 1134-1142(in Chinese).
[41] WANG T, XUE L K, BRIMBLECOMBE P, et al. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects [J]. Science of the Total Environment, 2017, 575: 1582-1596. doi: 10.1016/j.scitotenv.2016.10.081
[42] 王新富, 高良敏, 周晓芳, 等. 基于因子分析的安徽省大气污染特征及综合评价研究 [J]. 安徽理工大学学报(自然科学版), 2020, 40(1): 64-71. WANG X F, GAO L M, ZHOU X F, et al. Study on characteristics and comprehensive evaluation of air pollution in Anhui Province based on factor analysis [J]. Journal of Anhui University of Science and Technology (Natural Science), 2020, 40(1): 64-71(in Chinese).
[43] LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I [J]. Atmospheric Environment, 2008, 42(25): 6247-6260. doi: 10.1016/j.atmosenv.2008.01.070
[44] 张洲. 中国大气非甲烷碳氢化合物时空分布特征初步研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2016. ZHANG Z. Spatiotemporal patterns of ambient non-methane hydrocarbons in China[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2016:201(in Chinese).
[45] BARLETTA B, MEINARDI S, ROWLAND F S, et al. Volatile organic compounds in 43 Chinese cities [J]. Atmospheric Environment, 2005, 39(32): 5979-5990. doi: 10.1016/j.atmosenv.2005.06.029
[46] 王鸣, 陈文泰, 陆思华, 等. 我国典型城市环境大气挥发性有机物特征比值 [J]. 环境科学, 2018, 39(10): 4393-4399. WANG M, CHEN W T, LU S H, et al. Ratios of volatile organic compounds in ambient air of various cities of China [J]. Environmental Science, 2018, 39(10): 4393-4399(in Chinese).
[47] MO Z W, SHAO M, LU S H, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China [J]. Science of the Total Environment, 2015, 533: 422-431. doi: 10.1016/j.scitotenv.2015.06.089
[48] AN J L, ZHU B, WANG H L, et al. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China [J]. Atmospheric Environment, 2014, 97: 206-214. doi: 10.1016/j.atmosenv.2014.08.021