[1] FAN Y, ZHANG H J, REN M H, et al. Low-temperature catalytic degradation of chlorinated aromatic hydrocarbons over bimetallic Ce-Zr/UiO-66 catalysts [J]. Chemical Engineering Journal, 2021, 414: 128782. doi: 10.1016/j.cej.2021.128782
[2] 刘莎, 黄学敏, 黄林艳, 等. 酸碱气体对氯代芳烃削减的影响 [J]. 环境化学, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015 LIU S, HUANG X M, HUANG L Y, et al. Influence of acid and basic gases on the reduction of chlorinated aromatics [J]. Environmental Chemistry, 2014, 33(5): 731-738(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.05.015
[3] XU C H, LIU C Q, ZHONG Y, et al. Study on the active sites of Cu-ZSM-5 in trichloroethylene catalytic combustion with air [J]. Chinese Chemical Letters, 2008, 19(11): 1387-1390. doi: 10.1016/j.cclet.2008.07.010
[4] WEIDEMANN E, LUNDIN L. Behavior of PCDF, PCDD, PCN and PCB during low temperature thermal treatment of MSW incineration fly ash [J]. Chemical Engineering Journal, 2015, 279: 180-187. doi: 10.1016/j.cej.2015.05.015
[5] BA T, ZHENG M H, ZHANG B, et al. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China [J]. Chemosphere, 2009, 75(9): 1173-1178. doi: 10.1016/j.chemosphere.2009.02.052
[6] JIN R, ZHENG M H, LAMMEL G, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment [J]. Progress in Energy and Combustion Science, 2020, 76: 100803. doi: 10.1016/j.pecs.2019.100803
[7] BA T, ZHENG M H, ZHANG B, et al. Estimation and characterization of PCDD/Fs and dioxin-like PCB emission from secondary zinc and lead metallurgies in China [J]. Journal of Environmental Monitoring:JEM, 2009, 11(4): 867-872. doi: 10.1039/b818555g
[8] LEI R R, XU Z C, XING Y, et al. Global status of dioxin emission and China's role in reducing the emission [J]. Journal of Hazardous Materials, 2021, 418: 126265. doi: 10.1016/j.jhazmat.2021.126265
[9] 陈露露, 黄韬, 陈凯杰, 等. 我国PCDD/Fs网格化大气排放清单 [J]. 环境科学, 2020, 41(2): 510-519. CHEN L L, HUANG T, CHEN K J, et al. Gridded atmospheric emission inventory of PCDD/fs in China [J]. Environmental Science, 2020, 41(2): 510-519(in Chinese).
[10] Japan Ministry of The Environment, 2016. Dioxin Emission Inventory, Dioxin Emission Inventory[EB/OL].http://www.env.go.jp/press/files/jp/102407.pdf.
[11] QUINA M J, PEDRO R S, GANDO-FERREIRA L M, et al. A national inventory to estimate release of polychlorinated dibenzo-p-dioxins and dibenzofurans in Portugal [J]. Chemosphere, 2011, 85(11): 1749-1758. doi: 10.1016/j.chemosphere.2011.09.028
[12] 中华人民共和国生态环境部. 生活垃圾焚烧污染控制标准[EB/OL]. [2014-05-16] .https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/gtfwwrkzbz/201405/W020140530531389708182.pdf Ministry of Ecology and Environment of the People's Republic of China. Standard for pollution control on the municipal solid waste incineration[EB/OL]. [2014-05-16].https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthwgtfwwrkzbz/201405/W020140530531389708182.
[13] GAN L N, SHI W B, LI K Z, et al. Synergistic promotion effect between NOx and chlorobenzene removal on MnOx-CeO2 catalyst [J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30426-30432.
[14] GHOLAMI F, TOMAS M, GHOLAMI Z, et al. Technologies for the nitrogen oxides reduction from flue gas: A review [J]. Science of the Total Environment, 2020, 714: 136712. doi: 10.1016/j.scitotenv.2020.136712
[15] RAO A, MEHRA R K, DUAN H, et al. Comparative study of the NOx prediction model of HCNG engine [J]. International Journal of Hydrogen Energy, 2017, 42(34): 22066-22081. doi: 10.1016/j.ijhydene.2017.07.107
[16] SHANG X S, HU G R, HE C, et al. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 513-519. doi: 10.1016/j.jiec.2011.11.070
[17] BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement [J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141. doi: 10.1016/j.coche.2016.09.004
[18] 中华人民共和国生态环境部. 2016-2019年全国生态环境统计公报[EB/OL]. [2020-12-14]. http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf. Ministry of Ecology and Environment of the People's Republic of China. National Bulletin of Ecological Environment Statistics[EB/OL]. [2020-12-14]. http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf.
[19] 纪瑞军. 烧结烟气氧化吸收脱硝工艺研究[D]. 北京: 中国石油大学(北京), 2018. JI R J. The study of oxidation and absorption of NOx in sintering gas[D]. Beijing: China University of Petroleum (Beijing), 2018(in Chinese).
[20] WANG X Y, KANG Q, LI D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts [J]. Applied Catalysis B:Environmental, 2009, 86(3/4): 166-175.
[21] 刘建胜. 基于机械化学原理的卤代芳烃脱卤降解研究[D]. 杭州: 浙江工业大学, 2016. LIU J S. Studies on degradation and dehalogenation of halogenated aromatics by mechanochemical treatment[D]. Hangzhou: Zhejiang University of Technology, 2016(in Chinese).
[22] 罗邯予. 铈钛基催化剂上氯苯的催化燃烧性能研究[D]. 北京: 北京化工大学, 2019. LUO H Y. Catalytic combustion performance of chlorobenzene over ceria-titania-based complex metal oxides[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).
[23] 陈立. Ru基催化剂对氯代挥发性有机物(CVOCs)的催化氧化研究[D]. 贵阳: 贵州大学, 2018. CHEN L. Catalytic oxidation of chlorinated volatile organic compounds over ruthenium-based catalysts[D]. Guiyang: Guizhou University, 2018(in Chinese).
[24] 赵日晓. 改性钛基催化剂催化氧化气相氯苯以及二噁英的基础研究[D]. 杭州: 浙江大学, 2017. ZHAO R X. Fundamental research of gaseous chlorobenzenes and dioxins catalytic decomposition over modified titanium-based catalysts[D]. Hangzhou: Zhejiang University, 2017(in Chinese).
[25] TIAN W, FAN X Y, YANG H S, et al. Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene [J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 887-891.
[26] 卢朋. Mn、CeWOx/TiO2催化剂的制备及NH3-SCR性能研究[D]. 杭州: 浙江工业大学, 2017. LU P. Preparation of Mn, CeWOx/TiO2 catalyst and its NH3-SCR activity[D]. Hangzhou: Zhejiang University of Technology, 2017(in Chinese).
[27] CHEN L, LI J H, GE M F. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3 [J]. The Journal of Physical Chemistry C, 2009, 113(50): 21177-21184. doi: 10.1021/jp907109e
[28] 蒋威宇. V2O5-WO3/TiO2催化剂协同净化NOx与氯代芳香化合物的反应特征与副产物研究[D]. 杭州: 浙江大学, 2020. JIANG W Y. Reaction characteristics and byproducts analyses over V2O5-WO3/TiO2 catalyst in the synergistic elimination of NOx and chloroaromatics[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
[29] XU Z Z, DENG S B, YANG Y, et al. Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5-WO3/TiO2 catalyst [J]. Chemosphere, 2012, 87(9): 1032-1038. doi: 10.1016/j.chemosphere.2012.01.004
[30] BERTINCHAMPS F, TREINEN M, BLANGENOIS N, et al. Positive effect of NOx on the performances of VOx/TiO2-based catalysts in the total oxidation abatement of chlorobenzene [J]. Journal of Catalysis, 2005, 230(2): 493-498. doi: 10.1016/j.jcat.2005.01.009
[31] GALLASTEGI-VILLA M, ARANZABAL A, GONZÁLEZ-MARCOS J A, et al. Metal-loaded ZSM5 zeolites for catalytic purification of dioxin/furans and NOx containing exhaust gases from MWI plants: Effect of different metal cations [J]. Applied Catalysis B:Environmental, 2016, 184: 238-245. doi: 10.1016/j.apcatb.2015.11.006
[32] CAO J, LIU W Z, KANG K K, et al. Effects of the morphology and crystal-plane of TiO2 on NH3-SCR performance and K tolerance of V2O5-WO3/TiO2 catalyst [J]. Applied Catalysis A:General, 2021, 623: 118285. doi: 10.1016/j.apcata.2021.118285
[33] JIANG Y, GAO X, ZHANG Y X, et al. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts [J]. Journal of Hazardous Materials, 2014, 274: 270-278. doi: 10.1016/j.jhazmat.2014.04.026
[34] WU Z B, JIN R B, WANG H Q, et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature [J]. Catalysis Communications, 2009, 10(6): 935-939. doi: 10.1016/j.catcom.2008.12.032
[35] QU Z P, BU Y B, QIN Y, et al. The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene [J]. Applied Catalysis B:Environmental, 2013, 132/133: 353-362. doi: 10.1016/j.apcatb.2012.12.008
[36] HUANG L Y, SU G J, ZHANG A Q, et al. Degradation of polychlorinated biphenyls using mesoporous iron-based spinels [J]. Journal of Hazardous Materials, 2013, 261: 451-462. doi: 10.1016/j.jhazmat.2013.07.064
[37] PAN Y X, ZHAO W, ZHONG Q, et al. Promotional effect of Si-doped V2O5/TiO2 for selective catalytic reduction of NOx by NH3 [J]. Journal of Environmental Sciences, 2013, 25(8): 1703-1711. doi: 10.1016/S1001-0742(12)60181-8
[38] LI G B, SHEN K, WANG L, et al. Synergistic degradation mechanism of chlorobenzene and NOx over the multi-active center catalyst: The role of NO2, Brønsted acidic site, oxygen vacancy [J]. Applied Catalysis B:Environmental, 2021, 286: 119865. doi: 10.1016/j.apcatb.2020.119865
[39] XU J Q, ZOU X L, CHEN G R, et al. Tailored activity of Ce-Ni bimetallic modified V2O5/TiO2 catalyst for NH3-SCR with promising wide temperature window [J]. Vacuum, 2021, 191: 110384. doi: 10.1016/j.vacuum.2021.110384
[40] JIANG W Y, YU Y L, BI F, et al. Synergistic elimination of NOx and chloroaromatics on a commercial V2O5-WO3/TiO2 catalyst: Byproduct analyses and the SO2 effect [J]. Environmental Science & Technology, 2019, 53(21): 12657-12667.
[41] XIAO H P, CHEN Y, QI C, et al. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation [J]. Applied Surface Science, 2018, 433: 341-348. doi: 10.1016/j.apsusc.2017.10.048
[42] SUN B H, LI Q Q, ZHENG M H, et al. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials: A review [J]. Environmental Pollution, 2020, 265: 114908. doi: 10.1016/j.envpol.2020.114908
[43] HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene [J]. Applied Catalysis B:Environmental, 2014, 158/159: 96-105. doi: 10.1016/j.apcatb.2014.01.062
[44] PARK B H, KIM M, PARK N K, et al. Single layered hollow NiO-NiS catalyst with large specific surface area and highly efficient visible-light-driven carbon dioxide conversion [J]. Chemosphere, 2021, 280: 130759. doi: 10.1016/j.chemosphere.2021.130759
[45] BERTINCHAMPS F, TREINEN M, ELOY P, et al. Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs [J]. Applied Catalysis B:Environmental, 2007, 70(1/2/3/4): 360-369.
[46] GAN L N, WANG Y, CHEN J J, et al. The synergistic mechanism of NOx and chlorobenzene degradation in municipal solid waste incinerators [J]. Catalysis Science & Technology, 2019, 9(16): 4286-4292.
[47] WANG D, CHEN J J, PENG Y, et al. Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR [J]. Chemical Communications (Cambridge, England), 2018, 54(16): 2032-2035. doi: 10.1039/C7CC08705E
[48] GAN L N, LI K Z, XIONG S C, et al. MnOx-CeO2 catalysts for effective NOx reduction in the presence of chlorobenzene [J]. Catalysis Communications, 2018, 117: 1-4. doi: 10.1016/j.catcom.2018.08.008
[49] ZHAI S Y, SU Y T, WENG X L, et al. Synergistic elimination of NOx and chlorinated organics over VOx/TiO2 Catalysts: A combined experimental and DFT study for exploring vanadate domain effect [J]. Environmental Science & Technology, 2021, 55(19): 12862-12870.
[50] GAO C, YANG G P, HUANG X, et al. Key intermediates from simultaneous removal of NOx and chlorobenzene over a V2O5–WO3/TiO2 catalyst: A combined experimental and DFT study [J]. Catalysis Science & Technology, 2021, 11(22): 7260-7267.
[51] LICHTENBERGER J, AMIRIDIS M D. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts [J]. Journal of Catalysis, 2004, 223(2): 296-308. doi: 10.1016/j.jcat.2004.01.032
[52] DAI Q G, BAI S X, WANG X Y, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: Mechanism study [J]. Applied Catalysis B:Environmental, 2013, 129: 580-588. doi: 10.1016/j.apcatb.2012.10.006
[53] SUBRAMANIAN P, MURTHY M S. Mechanism of vapor-phase oxidation of anthracene over vanadium pentoxide catalyst [J]. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(2): 112-115.