[1] YOON S J, HONG S, KIM T, et al. Occurrence and bioaccumulation of persistent toxic substances in sediments and biota from intertidal zone of Abu Ali Island, Arabian Gulf [J]. Marine Pollution Bulletin, 2019, 144: 243-252. doi: 10.1016/j.marpolbul.2019.05.008
[2] SCHULTZ M M, BAROFSKY D F, FIELD J A. Fluorinated alkyl surfactants [J]. Environ Eng, 2003, 20(5): 487-501.
[3] FROMME H, BWCHER G, HILGER B, et al. Brominated flame retardants-Exposure and risk assessment for the general population [J]. International Journal of Hygiene and Environmental Health, 2016, 219(1): 1-23. doi: 10.1016/j.ijheh.2015.08.004
[4] XIE F, YANG M, JIANG M, et al. Carbon-based nanomaterials-A promising electrochemical sensor toward persistent toxic substance [J]. TrAC Trends in Analytical Chemistry, 2019, 119: 115624. doi: 10.1016/j.trac.2019.115624
[5] BARAKAT A O. Assessment of persistent toxic substances in the environment of Egypt [J]. Environment International, 2004, 30(3): 309-322. doi: 10.1016/S0160-4120(03)00181-8
[6] XU J, LI K, ZHANG S, et al. Removal of endocrine-disrupting chemicals from environment using a robust platform based on metal-organic framework nanoparticles [J]. ACS Applied Nano Materials, 2020, 3(4): 3646-3651. doi: 10.1021/acsanm.0c00347
[7] HE L, ZHANG Y, ZHENG Y, et al. Degradation of tetracycline by a novel MIL-101(Fe)/TiO2 composite with persulfate [J]. Journal of Porous Materials, 2019, 26(6): 1839-1850. doi: 10.1007/s10934-019-00778-y
[8] BENSON J J, SAKKOS J K, RADIAN A, et al. Enhanced biodegradation of atrazine by bacteria encapsulated in organically modified silica gels [J]. Journal of Colloid and Interface Science, 2018, 510: 57-68. doi: 10.1016/j.jcis.2017.09.044
[9] WANG J, ZHANG Y, WANG Y, et al. Bimetallic Ce-UiO-66-NH2/diatomite (CUD) self-assembled membrane simultaneously with synergetic effect of phase equilibrium and rate separation [J]. Journal of Membrane Science, 2020, 598: 117730. doi: 10.1016/j.memsci.2019.117730
[10] NEHRA M, DILBAGHI N, SINGHAL N K, et al. Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management [J]. Environmental Research, 2019, 169: 229-236. doi: 10.1016/j.envres.2018.11.013
[11] WANG D, JIA F, WANG H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs [J]. Journal of Colloid and Interface Science, 2018, 519: 273-284. doi: 10.1016/j.jcis.2018.02.067
[12] ZHANG N, ISHAG A, LI Y, et al. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review [J]. Journal of Cleaner Production, 2020, 277: 123360. doi: 10.1016/j.jclepro.2020.123360
[13] BHATNAGAR A, SILLANPAA M. Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review [J]. Chemosphere, 2017, 166: 497-510. doi: 10.1016/j.chemosphere.2016.09.098
[14] JIANG N, SHANG R, HEIJMAN S G J, et al. Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms [J]. Separation and Purification Technology, 2019, 235: 116152.
[15] LYU Y, LIU X, LIU W, et al. Adsorption/oxidation of ethyl mercaptan on Fe-N-modified active carbon catalyst [J]. Chemical Engineering Journal, 2020, 393: 124680. doi: 10.1016/j.cej.2020.124680
[16] KUMAR P, BANSAK V, KIM K, et al. Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment [J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 130-145. doi: 10.1016/j.jiec.2017.12.051
[17] KUMAR P, KIM K, LEE J, et al. Metal-organic framework for sorptive/catalytic removal and sensing applications against nitroaromatic compounds [J]. Journal of Industrial and Engineering Chemistry, 2020, 84: 87-95. doi: 10.1016/j.jiec.2019.12.024
[18] XU W, HUSSAIN A, LIU Y. A review on modification methods of adsorbents for elemental mercury from flue gas [J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2018, 346: 692-711.
[19] ZHAO R, MA T, ZHAO S, et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water [J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2020, 382: 122893.
[20] MU R, LIU B, CHEN X, et al. Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection [J]. Environmental Technology & Innovation, 2020, 20: 101107.
[21] LU T, ZHU Y, QI Y, et al. Tunable superporous magnetic adsorbent prepared via eco-friendly Pickering MIPEs for high-efficiency adsorption of Rb+ and Sr2+ [J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2019, 368: 988-998.
[22] ROCIO-BAUTISTA P, MARTINEZ-BENITO C, PINO V, et al. The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine [J]. Talanta, 2015, 139: 13-20. doi: 10.1016/j.talanta.2015.02.032
[23] ISLAMOGLU T, CHEN Z, WASSON M C, et al. Metal–Organic Frameworks against toxic chemicals [J]. Chemical Reviews, 2020, 120(16): 8130-8160. doi: 10.1021/acs.chemrev.9b00828
[24] RASHEEDT, BILAL M, HASSAN A A, et al. Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents [J]. Environmental Research, 2020, 185: 109436. doi: 10.1016/j.envres.2020.109436
[25] JOSEPH L, JUN B, JANG M, et al. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review [J]. Chemical Engineering Journal, 2019, 369: 928-946. doi: 10.1016/j.cej.2019.03.173
[26] KITAO T, ZHANG Y, KITAGAWA S, et al. Hybridization of MOFs and polymers [J]. Chemical Society Reviews, 2017, 46(11): 3108-3133. doi: 10.1039/C7CS00041C
[27] KARMAKAR A, PRABAKARAN V, ZHAO D, et al. A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications [J]. Applied Energy, 2020, 269: 115070. doi: 10.1016/j.apenergy.2020.115070
[28] JERME C, FATEEVA A, GUO Y, et al. Water adsorption in MOFs: Fundamentals and applications [J]. Chemical Society Reviews, 2014, 43(16): 5594-5617. doi: 10.1039/C4CS00078A
[29] 崔继方, 崔文权. 金属有机骨架材料在光催化领域的应用研究进展 [J]. 陶瓷, 2019, 11: 65-70. doi: 10.3969/j.issn.1002-2872.2019.11.008 CUI J F, CUI W Q. Advance of metal organic framework material in catalysis application [J]. Ceramic, 2019, 11: 65-70(in Chinese). doi: 10.3969/j.issn.1002-2872.2019.11.008
[30] 张贺. 金属有机骨架材料在吸附分离研究中的应用进展 [J]. 化学学报, 2017, 75: 841-859. doi: 10.6023/A17040168 ZHANG H, LI G, ZHANG K. Advances of metal-organic frameworks in adsorption and separation applications [J]. Acta Chimica. Sinica, 2017, 75: 841-859(in Chinese). doi: 10.6023/A17040168
[31] ZHONG W, LI R, LV J, et al. Two isomeric In(Ⅲ)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water [J]. Inorganic Chemistry Frontiers, 2020, 7(5): 1161-1171. doi: 10.1039/C9QI01490J
[32] 赵玲, 刘恒恒, 胡晴, 等. 金属有机骨架材料MOF-5催化吸附SO2 [J]. 环境化学, 2017, 36(9): 1914-1922. doi: 10.7524/j.issn.0254-6108.2016110901 ZHAO L, LIU H H, HU Q, et al. Synthesis of MOF-5 catalysts and their catalytic oxidation of sulfur dioxide [J]. Environmental Chemistry, 2017, 36(9): 1914-1922(in Chinese). doi: 10.7524/j.issn.0254-6108.2016110901
[33] HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging [J]. Nature Materials, 2009, 9(2): 172-178.
[34] YANG X, XU Q. Bimetallic metal-organic frameworks for gas storage and separation [J]. Crystal Growth & Design, 2017, 17(4): 1450-1455.
[35] RAMASWAMY P, WONG N E, SHIMIZU G K. MOFs as proton conductors-challenges and opportunities [J]. Chem Soc Rev, 2014, 43(16): 5913-5932. doi: 10.1039/C4CS00093E
[36] LI J, SCULLEY J, ZHOU H. Metal-organic frameworks for separations [J]. Chemical Reviews, 2011, 112(2): 869-932.
[37] BANGARI R S, SINHA N. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution [J]. Journal of Molecular Liquids, 2019, 293: 111376. doi: 10.1016/j.molliq.2019.111376
[38] ANTONELLI R, MARTINS F R, MALPASS G R P, et al. Ofloxacin adsorption by calcined Verde-lodo bentonite clay: Batch and fixed bed system evaluation [J]. Journal of Molecular Liquids, 2020, 315: 113718. doi: 10.1016/j.molliq.2020.113718
[39] GUO X, KANG C, HUANG H, et al. Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water [J]. Microporous and Mesoporous Materials, 2019, 286: 84-91. doi: 10.1016/j.micromeso.2019.05.025
[40] YU R, WU Z. High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment [J]. Microporous and Mesoporous Materials, 2020, 308: 110494. doi: 10.1016/j.micromeso.2020.110494
[41] WEI H, DENG S, HUANG Q, et al. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution [J]. Water Res, 2013, 47(12): 4139-4147. doi: 10.1016/j.watres.2012.11.062
[42] HASAN Z, KHAN N A, JHUNG S H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks [J]. Chemical Engineering Journal, 2016, 284: 1406-1413. doi: 10.1016/j.cej.2015.08.087
[43] WEN J, HAN X, LIN H, et al. A critical study on the adsorption of heterocyclic sulfur and nitrogen compounds by activated carbon: Equilibrium, kinetics and thermodynamics [J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2010, 164(1): 29-36.
[44] AHMED I, JHUNG S H. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding [J]. J Hazard Mater, 2016, 314: 318-325. doi: 10.1016/j.jhazmat.2016.04.041
[45] LI F, WANG Y, YANG Q, et al. Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution [J]. J. Hazard Mater, 2005, 125: 89-95. doi: 10.1016/j.jhazmat.2005.04.037
[46] KHOURY G A, GEHRIS T C,TRIBE L, et al. Glyphosate adsorption on montmorillonite: an experimental and theoretical study of surface complexes [J]. Appl Clay Sci, 2010, 50: 167-175. doi: 10.1016/j.clay.2010.07.018
[47] HU Y S, ZHAO Y Q, SOROHAN B. Removal of glyphosate from aqueous environment by adsorption using water industrial residual [J]. Desalination, 2011, 271: 150-156. doi: 10.1016/j.desal.2010.12.014
[48] ZHU X, LI B, YANG J, et al. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-Based MOFs of UiO-67 [J]. ACS Applied Materials & Interfaces, 2014, 7(1): 223-231.
[49] LIU Y, XU J, CAO Z, et al. Adsorption behavior and mechanism of Pb(Ⅱ) and complex Cu(Ⅱ) species by biowaste-derived char with amino functionalization [J]. Journal of Colloid and Interface Science, 2020, 559: 215-225. doi: 10.1016/j.jcis.2019.10.035
[50] WAN X, KHAN M A, WANG F, et al. Facile synthesis of protonated g-C3N4 and acid-activated montmorillonite composite with efficient adsorption capacity for PO43- and Pb(Ⅱ) [J]. Chemical Engineering Research & Design, 2019, 152: 95-105.
[51] WANG J, LI Y, LV Z, et al. Exploration of the adsorption performance and mechanism of zeolitic imidazolate framework-8@graphene oxide for Pb(Ⅱ) and 1-naphthylamine from aqueous solution [J]. J Colloid Interface Sci, 2019, 542: 410-420. doi: 10.1016/j.jcis.2019.02.039
[52] DALI Y L, BELAROUI L S, LOPEZ-GALINDO A. Adsorption of a cationic methylene blue dye on an Algerian palygorskite [J]. Applied Clay Science, 2019, 179: 105145. doi: 10.1016/j.clay.2019.105145
[53] KHANDAY W A, ASIF M, HAMEED B H. Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes [J]. Int J Biol Macromol, 2017, 95: 895-902. doi: 10.1016/j.ijbiomac.2016.10.075
[54] PAIMAN S H, RAHMAN M A, UCHIKOSHI T, et al. Functionalization effect of Fe-type MOF for methylene blue adsorption [J]. Journal of Saudi Chemical Society, 2020, 24(11): 896-905. doi: 10.1016/j.jscs.2020.09.006
[55] 张爱琴, 郭斌, 柳利龙. 荧光金属有机骨架材料在离子检测中的应用[J]. 广州化工, 2020, 48(24): 20-23. ZHANG A Q, GUO B, LIU L L. Application of luminescent metal-organic frameworks in ions detection[J] Guangzhou Chemical Industry, 2020, 48(24): 20-23(in Chinese).
[56] GAO Y, LIU G, GAO M, et al. Recent advances and applications of magnetic metal-organic frameworks in adsorption and enrichment removal of food and environmental pollutants [J]. Critical Reviews in Analytical Chemistry, 2019, 50(5): 1-13.
[57] AHMED I, BHADRA B N, LEE H J, et al. Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water [J]. Catalysis Today, 2018, 301: 90-97. doi: 10.1016/j.cattod.2017.02.011
[58] SARKER M, AHMED I, JHUNG S H. Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ZIF-8 [J]. Chemical Engineering Journal, 2017, 323: 203-211. doi: 10.1016/j.cej.2017.04.103
[59] WANG X, MA X, WANG H, et al. A zinc(II) benzene tricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides [J]. Microchimica Acta, 2017, 184(10): 3681-3687. doi: 10.1007/s00604-017-2382-1
[60] DUO H, LU X, WANG S, et al. Synthesis of magnetic metal–organic framework composites, Fe3O4-NH2@MOF-235, for the magnetic solid-phase extraction of benzoylurea insecticides from honey, fruit juice and tap water samples [J]. New Journal of Chemistry, 2019, 43(32): 12563-12569. doi: 10.1039/C9NJ01988J
[61] JIA Y, ZHANG Y, XU J, et al. A high-performance “sweeper” for toxic cationic herbicides: An anionic metal–organic framework with a tetrapodal cage [J]. Chemical Communications, 2015, 51(98): 17439-17442. doi: 10.1039/C5CC07249B
[62] HASAN Z, CHOI E, JHUNG S H. Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups [J]. Chemical Engineering Journal, 2013, 219: 537-544. doi: 10.1016/j.cej.2013.01.002
[63] ABDELHAMEED R M, ABDEL-GAWAD H, ELSHAHAT M, et al. Cu-BTC@cotton composite: design and removal of ethion insecticide from water [J]. RSC Advances, 2016, 6(48): 42324-42333. doi: 10.1039/C6RA04719J
[64] JAMALI A, SHEMIRANI F, MORSALI A. A comparative study of adsorption and removal of organophosphorus insecticides from aqueous solution by Zr-based MOFs [J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 83-92. doi: 10.1016/j.jiec.2019.07.034
[65] BHADEA B N, CHO K H, KHAN N A, et al. Liquid-Phase adsorption of aromatics over a metal-organic framework and activated carbon: effects of hydrophobicity/hydrophilicity of adsorbents and solvent polarity [J]. The Journal of Physical Chemistry C, 2015, 119(47): 26620-26627. doi: 10.1021/acs.jpcc.5b09298
[66] JIANG J, YANG C, YAN X. Zeolitic Imidazolate Framework-8 for Fast Adsorption and Removal of Benzotriazoles from Aqueous Solution [J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9837-9842.
[67] AZHAR M R, ABID H R, SUN H, et al. Excellent performance of copper-based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater [J]. Journal of Colloid and Interface Science, 2016, 478: 344-352. doi: 10.1016/j.jcis.2016.06.032
[68] WANG X, MA X, HUANG P, et al. Magnetic Cu-MOFs embedded within graphene oxide nanocomposites for enhanced preconcentration of benzenoid-containing insecticides [J]. Talanta, 2018, 181: 112-117. doi: 10.1016/j.talanta.2018.01.004
[69] XU Z, WEN Y, TIAN L, et al. Efficient and selective adsorption of nitroaromatic explosives by Zr-MOF [J]. Inorganic Chemistry Communications, 2017, 77: 11-13. doi: 10.1016/j.inoche.2017.01.025
[70] HASAN Z, JEON J, JHUNG S H. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks [J]. Journal of Hazardous Materials, 2012, 209-210: 151-157. doi: 10.1016/j.jhazmat.2012.01.005
[71] WANG H, YUAN X, WU Y, et al. In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis [J]. Applied Catalysis B:Environmental, 2016, 186: 19-29. doi: 10.1016/j.apcatb.2015.12.041
[72] LI N, ZHOU L, JIN X, et al. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework [J]. Journal of Hazardous Materials, 2019, 366: 563-572. doi: 10.1016/j.jhazmat.2018.12.047
[73] KHAN N A, JUNG B K, HASAN Z, et al. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks [J]. Journal of Hazardous Materials, 2015, 282: 194-200. doi: 10.1016/j.jhazmat.2014.03.047
[74] ABDWLHAMEED R M, TAHA M, ABDEL-GAWAD H, et al. Zeolitic imidazolate frameworks: Experimental and molecular simulation studies for efficient capture of pesticides from wastewater [J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103499. doi: 10.1016/j.jece.2019.103499
[75] WANG B, LV X, FENG D, et al. Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water [J]. Journal of the American Chemical Society, 2016, 138(19): 6204-6216. doi: 10.1021/jacs.6b01663
[76] SONG J Y, JHUNG S H. Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: Quantitative analyses of H-bonding in adsorption [J]. Chemical Engineering Journal, 2017, 322: 366-374. doi: 10.1016/j.cej.2017.04.036
[77] PAN Y, LI Z, ZHANG Z, et al. Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67 [J]. Journal of Environmental Management, 2016, 169: 167-173.
[78] LIU K, ZHANG S, HU X, et al. Understanding the adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal–Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments [J]. Environmental Science & Technology, 2015, 49(14): 8657-8665.
[79] SARKER M, BHADRA B N, SEO P W, et al. Adsorption of benzotriazole and benzimidazole from water over a Co-based metal azolate framework MAF-5(Co) [J]. Journal of Hazardous Materials, 2017, 324: 131-138. doi: 10.1016/j.jhazmat.2016.10.042
[80] JUN J W, TONG M, JUNG B K, et al. Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water: Plausible mechanism of adsorption and water purification [J]. Chemistry - A European Journal, 2015, 21(1): 347-354. doi: 10.1002/chem.201404658
[81] SEO Y S, KHAN N A, JHUNG S H. Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework [J]. Chemical Engineering Journal, 2015, 270: 22-27. doi: 10.1016/j.cej.2015.02.007
[82] ARIS A Z, MOHD HIR A, RAZAK M R. Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from aqueous solution: A review [J]. Applied Materials Today, 2020, 21: 100796. doi: 10.1016/j.apmt.2020.100796
[83] LI J, WANG X, ZHAO G, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions [J]. Chemical Society Reviews, 2018, 47(7): 2322-2356. doi: 10.1039/C7CS00543A
[84] WANG Y, ZHAO W, QI Z, et al. Designing ZIF-8/hydroxylated MWCNT nanocomposites for phosphate adsorption from water: Capability and mechanism [J]. Chemical Engineering Journal, 2020, 394: 124992. doi: 10.1016/j.cej.2020.124992
[85] GUO Y, JIN H, QI Z, et al. Carbonized-MOF as a sulfur host for aluminums Sulfur batteries with enhanced capacity and cycling life [J]. Advanced Functional Materials, 2019, 29(7): 1807676.
[86] PANG Y, ZANG X, LI H, et al. Solid-phase microextraction of organophosphorus pesticides from food samples with a nitrogen-doped porous carbon derived from g-C3N4 templated MOF as the fiber coating [J]. Journal of Hazardous Materials, 2020, 384: 121430. doi: 10.1016/j.jhazmat.2019.121430
[87] LIU X, WANG C, WANG Z, et al. Nanoporous carbon derived from a metal organic framework as a new kind of adsorbent for dispersive solid phase extraction of benzoylurea insecticides [J]. Microchemical Acta, 2015, 182(11-12): 1903-1910. doi: 10.1007/s00604-015-1530-8
[88] ABDELILLAH A E E, ŞAHIN S, BAYAZIT Ş S. Preparation of CeO2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption [J]. Journal of Molecular Liquids, 2018, 255: 10-17. doi: 10.1016/j.molliq.2018.01.165
[89] YU J, MU C, YAN B, et al. Nanoparticle/MOF composites: Preparations and applications [J]. Materials Horizons, 2017, 4(4): 557-569. doi: 10.1039/C6MH00586A
[90] YANG Q, WANG J, ZHANG W, et al. Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide [J]. Chemical Engineering Journal, 2017, 313: 19-26. doi: 10.1016/j.cej.2016.12.041
[91] LIU G, HUANG X, LU M, et al. Facile synthesis of magnetic zinc metal-organic framework for extraction of N-containing heterocyclic fungicides from lettuce vegetable samples [J]. Journal of Separation Science, 2019, 42(7): 1451-1458. doi: 10.1002/jssc.201801169
[92] LIU G, LI L, GAO Y, et al. A beta-cyclodextrin-functionalized magnetic metal organic framework for efficient extraction and determination of prochloraz and triazole fungicides in vegetables samples [J]. Ecotoxicology and Environmental Safety, 2019, 183: 109546. doi: 10.1016/j.ecoenv.2019.109546
[93] YANG Q, ZHAO Q, REN S, et al. Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol [J]. Chemical Engineering Journal, 2017, 323: 74-83. doi: 10.1016/j.cej.2017.04.091
[94] JIANG Y, MA P, PIAO H, et al. Solid-phase microextraction of triazine herbicides via cellulose paper coated with a metal-organic framework of type MIL-101(Cr), and their quantitation by HPLC-MS [J]. Microchimica Acta, 2019, 186(11): 1-8.
[95] GANGU K K, MADDILA S, MUKKAMALA S B, et al. Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review [J]. Journal of Energy Chemistry, 2019, 30: 132-144. doi: 10.1016/j.jechem.2018.04.012
[96] LIU G, LI L, HUANG X, et al. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes@organic framework ZIF-8 [J]. Journal of Materials Science, 2018, 53(15): 10772-10783. doi: 10.1007/s10853-018-2352-y
[97] NIU M, LI Z, HE W, et al. Attapulgite modified magnetic metal-organic frameworks for magnetic solid phase extraction and determinations of benzoylurea insecticides in tea infusions [J]. Food Chemistry, 2020, 317: 126425-126425. doi: 10.1016/j.foodchem.2020.126425
[98] ZHANG R, WANG Z, ZHOU Z, et al. Highly effective removal of pharmaceutical compounds from aqueous solution by magnetic Zr-Based MOFs composites [J]. Industrial & Engineering Chemistry Research, 2019, 58(9): 3876-3884.
[99] SEO P W, AHMED I, JHUNG S H. Adsorptive removal of nitrogen-containing compounds from a model fuel using a metal–organic framework having a free carboxylic acid group [J]. Chemical Engineering Journal, 2016, 299: 236-243. doi: 10.1016/j.cej.2016.04.060
[100] AHMED I, KHAN N A, JHUNG S H. Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties [J]. Chemical Engineering Journal, 2017, 321: 40-47. doi: 10.1016/j.cej.2017.03.093
[101] SHIN S, SARKER M, LEE H, et al. Metal-organic framework with various functional groups: Remarkable adsorbent for removal of both neutral indole and basic quinoline from liquid fuel [J]. Chemical Engineering Journal, 2019, 370: 1467-1473. doi: 10.1016/j.cej.2019.03.290
[102] LV Y, ZHANG R, ZENG S, et al. Removal of p-arsanilic acid by an amino-functionalized indium-based metal–organic framework: Adsorption behavior and synergetic mechanism [J]. Chemical Engineering Journal, 2018, 339: 359-368. doi: 10.1016/j.cej.2018.01.139
[103] LIU B, YANG F, ZOU Y, et al. Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: Effect of hydrogen bonding [J]. Journal of Chemical & Engineering Data, 2014, 59(5): 1476-1482.
[104] AKPINAR I, DROUT R J, ISLAMOGLU T, et al. Exploiting π–π interactions to design an efficient sorbent for atrazine removal from water [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6097-6103.
[105] SILVA B C E , IRIKURA K , REGINA C G F, et al. Effect of Cu(BDC-NH2) MOF deposited on Cu/Cu2O electrode and its better performance in photoelectrocatalytic reduction of CO2 [J]. Journal of Electroanalytical Chemistry, 2020, 880: 114856. doi: 10.1016/j.jelechem.2020.114856
[106] CAI Z, BIEN C E, LIU Q, et al. Insights into CO2 adsorption in M-OH functionalized MOFs [J]. Chemistry of materials, 2020, 32(10): 4257-4264. doi: 10.1021/acs.chemmater.0c00746
[107] ZHANG X, WANG J, DONG X X, et al. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment [J]. Chemosphere, 2020, 242(Mar.): 125144.1-125144.15.
[108] MALLICK A, EL-ZOHRY A M, SHEKHAH O, et al. Unprecedented ultralow detection limit of amines using a Thiadiazole-Functionalized Zr(Ⅳ)-Based metal-organic framework [J]. Journal of the American Chemical Society, 2019, 141(18): 7245-7249. doi: 10.1021/jacs.9b01839
[109] CUI Y, ZHU F, CHEN B, et al. Metal-organic frameworks for luminescence thermometry [J]. Chem Commun (Camb), 2015, 51(35): 7420-7431. doi: 10.1039/C5CC00718F
[110] LUSTUG W, MUKHERJEE S, RUDD N, et al. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications [J]. Chemical Society Reviews, 2017, 46(11): 3242-3285. doi: 10.1039/C6CS00930A
[111] HU Z, TAN K, LUSTIG W P, et al. Effective sensing of RDX via instant and selective detection of ketone vapors [J]. Chemical Science (Cambridge), 2014, 5(12): 4873-4877.
[112] ZHU X, ZHANG K, WANG Y, et al. Fluorescent metal-organic framework (MOF) as a highly sensitive and quickly responsive chemical sensor for the detection of antibiotics in simulated wastewater [J]. Inorganic Chemistry, 2018, 57(3): 1060-1065. doi: 10.1021/acs.inorgchem.7b02471
[113] HAN M, WEN G, DONG W, et al. A heterometallic sodium–europium-cluster-based metal–organic framework as a versatile and water-stable chemosensor for antibiotics and explosives [J]. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(33): 8469-8474. doi: 10.1039/C7TC02885G
[114] ZHOU Y, YANG Q, ZHANG D, et al. Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF [J]. Sensors and Actuators B:Chemical, 2018, 262: 137-143. doi: 10.1016/j.snb.2018.01.218
[115] ZHANG F, YAO H, CHU T, et al. A lanthanide MOF thin-film fixed with Co3O4 nano-anchors as a highly efficient luminescent sensor for nitrofuran antibiotics [J]. Chemistry, 2017, 23(43): 10293-10300. doi: 10.1002/chem.201701852
[116] HE K, LI Z, WANG L, et al. A water-stable luminescent metal-organic framework for rapid and visible sensing of organophosphorus pesticides [J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26250-26260.
[117] SINGHA D K, MAJEE P, MONDAL S K, et al. Detection of pesticide using the large stokes shift of luminescence of a mixed lanthanide co-doped metal–organic framework [J]. Polyhedron, 2019, 158: 277-282. doi: 10.1016/j.poly.2018.10.066
[118] LAN A, LI K, WU H, et al. A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives [J]. Angewandte Chemie International Edition, 2009, 48(13): 2334-2338. doi: 10.1002/anie.200804853
[119] WANG X S, LI L, YUAN D Q, et al. Fast highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection [J]. Journal of Hazardous Materials, 2018, 344: 283-290. doi: 10.1016/j.jhazmat.2017.10.027
[120] WENG H, Yan B. A flexible Tb (Ⅲ) functionalized cadmium metal organic framework as fluorescent probe for highly selectively sensing ions and organic small molecules [J]. Sensors and Actuators B:Chemical, 2016, 228: 702-708. doi: 10.1016/j.snb.2016.01.101
[121] JI G, LIU J, GAO X, et al. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb2+ ions in aqueous solution [J]. Journal of Materials Chemistry A, 2017, 5(21): 10200-10205. doi: 10.1039/C7TA02439H
[122] WANG B, WANG P, XIE L H, et al. A stable zirconium-based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules [J]. Nature Communications, 2019, 10(1): 1-8. doi: 10.1038/s41467-018-07882-8
[123] XING S, BING Q, QI H, et al. Rational design and functionalization of a zinc metal-organic framework for highly selective detection of 2, 4, 6-Trinitrophenol [J]. ACS Appl Mater Interfaces, 2017, 9(28): 23828-23835. doi: 10.1021/acsami.7b06482
[124] YANG Q, WANG J, CHEN X, et al. The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent [J]. Journal of Materials Chemistry A, 2018, 6(5): 2184-2192. doi: 10.1039/C7TA08399H