[1] 肖瑶, 吴中杰, 崔美, 等. 生物炭-膨润土共改性及其铅离子吸附与稳定化研究 [J]. 无机材料学报, 2021, 36(10): 1083-1090. doi: 10.15541/jim20200745 XIAO Y, WU Z J, CUI M, et al. Co-modification of biochar and bentonite for adsorption and stabilization of Pb2+ ions [J]. Journal of Inorganic Materials, 2021, 36(10): 1083-1090(in Chinese). doi: 10.15541/jim20200745
[2] 陈晓晨, 韩泽亮, 张剑宇, 等. 中国典型土壤中铅的生物可给性的影响因素分析与健康风险评估 [J]. 生态环境学报, 2021, 30(1): 165-172. CHEN X C, HAN Z L, ZHANG J Y, et al. Study on the influencing factors of Pb bioaccessibility in typical soils in China and the human health risk assessment [J]. Ecology and Environmental Sciences, 2021, 30(1): 165-172(in Chinese).
[3] 厉有为, 梁婵娟. 三种油料作物对土壤Pb污染的耐受性与积累 [J]. 环境化学, 2021, 40(5): 1602-1610. doi: 10.7524/j.issn.0254-6108.2020010601 LI Y W, LIANG C J. Tolerance and accumulation of lead in three oil crops to lead pollution in soil [J]. Environmental Chemistry, 2021, 40(5): 1602-1610(in Chinese). doi: 10.7524/j.issn.0254-6108.2020010601
[4] 彭涛. 水体中铅的浓度对南方鲇的生理生态学影响 [D]. 重庆: 西南大学, 2013. PENG T. Ecophysiological effects of the water-borne lead (Pb) concentrations on southern catfish (Silurus meridionalis) [D]. Chongqing: Southwest University, 2013 (in Chinese).
[5] MAYANS L. Lead poisoning in children [J]. American Family Physician, 2019, 100(1): 24-30.
[6] 汪振文, 王会才, 杨继斌, 等. 吸附法去除水中重金属复合污染物的研究状况 [J]. 稀有金属, 2020, 44(1): 87-99. WANG Z W, WANG H C, YANG J B, et al. Removal of heavy metal complex pollutants in water by adsorption [J]. Chinese Journal of Rare Metals, 2020, 44(1): 87-99(in Chinese).
[7] 王鑫宇, 张曦, 孟海波, 等. 温度对生物炭吸附重金属特性的影响研究 [J]. 中国农业科技导报, 2021, 23(2): 150-158. WANG X Y, ZHANG X, MENG H B, et al. Impact of temperature on adsorption characteristics of biochar on heavy metals [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 150-158(in Chinese).
[8] 钱琪所, 赵娟, 谢立灏, 等. 改良黏土对重金属离子的吸附特性及防渗性能 [J]. 环境科学与技术, 2020, 43(2): 96-101. QIAN Q S, ZHAO J, XIE L H, et al. Adsorption characteristics of heavy metal and permeability by sludge activated carbon modified clay [J]. Environmental Science & Technology, 2020, 43(2): 96-101(in Chinese).
[9] 艾翠玲, 雷英杰, 张国春, 等. 纳米铁氧化物吸附处理重金属废水的研究进展 [J]. 化工环保, 2015, 35(6): 593-598. doi: 10.3969/j.issn.1006-1878.2015.06.008 AI C L, LEI Y J, ZHANG G C, et al. Research progresses on adsorption of heavy metals from wastewater using nano iron oxides [J]. Environmental Protection of Chemical Industry, 2015, 35(6): 593-598(in Chinese). doi: 10.3969/j.issn.1006-1878.2015.06.008
[10] 尹仁文, 陈正行, 李娟, 等. 米渣蛋白对镉的吸附效果及其对土壤中镉的钝化作用研究 [J]. 农业工程学报, 2019, 35(2): 221-228. doi: 10.11975/j.issn.1002-6819.2019.02.028 YIN R W, CHEN Z X, LI J, et al. Adsorption of cadmium in aqueous solution and passivation of cadmium in soil by rice dreg protein [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 221-228(in Chinese). doi: 10.11975/j.issn.1002-6819.2019.02.028
[11] 孟凡德, 袁国栋, 韦婧, 等. 风化煤提取的胡敏酸对镉的吸附性能及其应用潜力 [J]. 浙江大学学报(农业与生命科学版), 2016, 42(4): 460-468. MENG F D, YUAN G D, WEI J, et al. Humic acid from leonardite for cadmium adsorption and potential applications [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(4): 460-468(in Chinese).
[12] MENG F D, YUAN G D, WEI J, et al. Leonardite-derived humic substances are great adsorbents for cadmium [J]. Environmental Science and Pollution Research, 2017, 24(29): 23006-23014. doi: 10.1007/s11356-017-9947-8
[13] TAN K H. Humic matter in soil and the environment: principles and controversies, 2nd edn [M]. Boca Raton: CRC Press, 2014.
[14] COLES C A, YONG R N. Humic acid preparation, properties and interactions with metals lead and cadmium [J]. Engineering Geology, 2006, 85(1-2): 26-32. doi: 10.1016/j.enggeo.2005.09.024
[15] de SOUZA F, BRAGANÇA S R. Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders [J]. Journal of Materials Research and Technology, 2018, 7(3): 254-260. doi: 10.1016/j.jmrt.2017.08.008
[16] TAHIR M M, KHURSHID M, KHAN M Z, et al. Lignite-derived humic acid effect on growth of wheat plants in different soils [J]. Pedosphere, 2011, 21(1): 124-131. doi: 10.1016/S1002-0160(10)60087-2
[17] LIU A G, GONZALEZ R D. Modeling adsorption of copper(II), cadmium(II) and lead(II) on purified humic acid [J]. Langmuir, 2000, 16(8): 3902-3909. doi: 10.1021/la990607x
[18] BAKER H, KHALILI F. Analysis of the removal of lead(II) from aqueous solutions by adsorption onto insolubilized humic acid: Temperature and pH dependence [J]. Analytica Chimica Acta, 2004, 516(1-2): 179-186. doi: 10.1016/j.aca.2004.03.068
[19] HABIBUL N, CHEN W. Structural response of humic acid upon binding with lead: A spectroscopic insight [J]. Science of the Total Environment, 2018, 643: 479-485. doi: 10.1016/j.scitotenv.2018.06.229
[20] International Humic Substances Society. Acidic functional groups of IHSS samples, 2021. https://humic-substances.org/acidic-functional-groups-of-ihss-samples/#products.
[21] MENG F D, YUAN G D, WEI J, et al. Humic substances as a washing agent for Cd-contaminated soils [J]. Chemosphere, 2017, 181: 461-467. doi: 10.1016/j.chemosphere.2017.04.127
[22] RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. doi: 10.1039/a807854h
[23] SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics [J]. Chemical Engineering Journal, 2016, 300: 254-263. doi: 10.1016/j.cej.2016.04.079
[24] HO Y S. Review of second-order models for adsorption systems [J]. Journal of Hazardous Materials, 2006, 136(3): 681-689. doi: 10.1016/j.jhazmat.2005.12.043
[25] OFOMAJA A E. Intraparticle diffusion process for lead(II) biosorption onto Mansonia wood sawdust [J]. Bioresource Technology, 2010, 101(15): 5868-5876. doi: 10.1016/j.biortech.2010.03.033
[26] WU F C, TSENG R L, JUANG R S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems [J]. Chemical Engineering Journal, 2009, 150(2/3): 366-373.
[27] ARAÚJO C S T, ALMEIDA I L S, REZENDE H C, et al. Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms [J]. Microchemical Journal, 2018, 137: 348-354. doi: 10.1016/j.microc.2017.11.009
[28] GUBERNAK M, ZAPAȽA W, KACZMARSKI K. Analysis of amylbenzene adsorption equilibria on an RP-18e chromatographic column [J]. Acta Chromatographica, 2003(13): 38-59.
[29] MENG F D, YUAN G D, LARSON S L, et al. Removing uranium (Ⅵ) from aqueous solution with insoluble humic acid derived from leonardite [J]. Journal of Environmental Radioactivity, 2017, 180: 1-8. doi: 10.1016/j.jenvrad.2017.09.019
[30] ORSETTI S, MARCO-BROWN J L, ANDRADE E M, et al. Pb(Ⅱ) binding to humic substances: An equilibrium and spectroscopic study [J]. Environmental Science & Technology, 2013, 47(15): 8325-8333.
[31] SHI W J, LÜ C, HE J, et al. Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals [J]. Ecotoxicology and Environmental Safety, 2018, 154: 59-68. doi: 10.1016/j.ecoenv.2018.02.013
[32] PICCOLO A, ZACCHEO P, GENEVINI P G. Chemical characterization of humic substances extracted from organic-waste-amended soils [J]. Bioresource Technology, 1992, 40(3): 275-282. doi: 10.1016/0960-8524(92)90154-P
[33] ETCI Ö, BEKTAŞ N, ÖNCEL M S. Single and binary adsorption of lead and cadmium ions from aqueous solution using the clay mineral beidellite [J]. Environmental Earth Sciences, 2010, 61(2): 231-240. doi: 10.1007/s12665-009-0338-4
[34] IMAMOGLU M, TEKIR O. Removal of copper (Ⅱ) and lead (Ⅱ) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks [J]. Desalination, 2008, 228(1/2/3): 108-113.
[35] 邵云, 陈静雯, 王温澎, 等. 四种有机物料对Pb2+的吸附特性 [J]. 农业环境科学学报, 2017, 36(9): 1858-1867. doi: 10.11654/jaes.2017-0253 SHAO Y, CHEN J W, WANG W P, et al. Adsorption of Pb2+ by different organic materials in aqueous solution [J]. Journal of Agro-Environment Science, 2017, 36(9): 1858-1867(in Chinese). doi: 10.11654/jaes.2017-0253
[36] MENG F D, ZHANG Y W, CAI Y B, et al. Kinetic and thermodynamic features of Pb(Ⅱ) removal from aqueous solution by leonardite-derived humic acid [J]. Water, Air, & Soil Pollution, 2021, 232(7): 1-12.
[37] SHAHID M, PINELLI E, DUMAT C. Review of Pb availability and toxicity to plants in relation with metal speciation: role of synthetic and natural organic ligands [J]. Journal of Hazardous Materials, 2012, 219-220: 1-12. doi: 10.1016/j.jhazmat.2012.01.060
[38] JANOŠ P, VÁVROVÁ J, HERZOGOVÁ L, et al. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study [J]. Geoderma, 2010, 159(3-4): 335-341. doi: 10.1016/j.geoderma.2010.08.009
[39] KOUKAL B, GUÉGUEN C, PARDOS M, et al. Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata [J]. Chemosphere, 2003, 53(8): 953-961. doi: 10.1016/S0045-6535(03)00720-3
[40] RONG Q, ZHONG K, HUANG H, et al. Humic acid reduces the available cadmium, copper, lead, and zinc in soil and their uptake by tobacco [J]. Applied Sciences, 2020, 10(3): 1077. doi: 10.3390/app10031077
[41] WANG M C, CHANG S H. Mean residence times and characteristics of humic substances extracted from a Taiwan soil [J]. Canadian Journal of Soil Science, 2001, 81(3): 299-307. doi: 10.4141/S00-068
[42] RODRÍGUEZ-MURILLO J C, ALMENDROS G, KNICKER H. Humic acid composition and humification processes in wetland soils of a Mediterranean semiarid wetland [J]. Journal of Soils and Sediments, 2017, 17(8): 2104-2115. doi: 10.1007/s11368-017-1663-y
[43] 国家环境保护总局. 中华人民共和国环保行业标准: 食用农产品产地环境质量评价标准HJ/T 332—2006 [S]. 北京: 中国环境科学出版社, 2007. State Environmental Protection Administration of the People's Republic of China. Environmental Protection Standard of the People's Republic of China: Farland environmental quality evaluation standards for edible agricultural products. HJ/T 332—2006 [S]. Beijing: China Environment Science Press, 2007 (in Chinese).
[44] YUAN G D, THENG B K G. Clay-organic interactions in soil environments// HUANG PM, SUMNER M, LI YC. Handbook of soil science: Resource management and environmental impacts, 2nd edn [M]. Boca Raton: CRC Press, Taylor & Francis Group, 2011: 2-1–2-20.
[45] YUAN G D. Nanomaterials to the rescue [J]. Nano Today, 2008, 3(1-2): 61.