[1] EMMA A, ZUIDE J, BOER J. Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food [J]. Chemosphere, 2020, 255: 126816. doi: 10.1016/j.chemosphere.2020.126816
[2] NNOROM I C, OSIBANJO O. Sound management of brominated flame retarded (BFR) plastics from electronic wastes: State of the art and options in Nigeria [J]. Resources, Conservation & Recycling, 2008, 52(12): 1362-1367.
[3] YU Y, WANG Z, WANG Q, et al. Excretion characteristics of tetrabromobisphenol-A in Wistar rats following mouth and nose inhalation exposure [J]. Chemosphere, 2017, 175 147-152.
[4] YU Y, LI L, YU L, et al. Effect of exposure to decabromodiphenyl ether and tetrabromobisphenol A in combination with lead and cadmium on soil enzyme activity [J]. International Biodeterioration & Biodegradation, 2017, 117 45-51.
[5] YANG S W, WANG S R, LIU H L, et al. Tetrabromobisphenol A: tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China [J]. Environmental Science and Pollution Research, 2012, 19(9): 4090-4096.
[6] 程浩淼, 陈玉茹, 赵永岭, 等. 巢湖水域四溴双酚A的多介质迁移与归趋模拟 [J]. 中国环境科学, 2019, 39(1): 314-320. doi: 10.3969/j.issn.1000-6923.2019.01.036 CHEN H M, CHEN Y R, ZHAO Y L, et al. Simulation of multimedia transfer and fate of tetrabromobisphenol A in Lake Chaohu [J]. China Environmental Science, 2019, 39(1): 314-320(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.01.036
[7] FENG A H, CHEN S J, CHEN M Y, et al. Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD [J]. Marine Pollution Bulletin, 2012, 64(5): 919-925. doi: 10.1016/j.marpolbul.2012.03.008
[8] 路风辉, 冯岸红, 陈满英, 等. 珠三角表层沉积物的有机碳及其与卤系阻燃剂的关系 [J]. 地球与环境, 2015, 43(1): 49-54. LU F H, FENG A H, CHEN M Y, et al. Total organic carbons and their correlations with halogenated flame retardants in surface sediments from the Pearl River Delta, China [J]. Earth and Environment, 2015, 43(1): 49-54(in Chinese).
[9] 张琳, 云霞, 那广水, 等. 环境水体中四溴双酚A的HPLC-MS/MS分析方法的建立与应用 [J]. 环境工程学报, 2011, 5(5): 1077-1080. ZHANG L, YUN X, NA G S, et al. Determination and application of TBBPA in water by high performance liquid chromatography-tandem mas spectrometry [J]. Chinese Journal of Environmental Engineering, 2011, 5(5): 1077-1080(in Chinese).
[10] YU Z, LIN Q, GU Y, et al. Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in wild marine fish from the coastal waters of the northern South China Sea: Risk assessment for human health [J]. Ecotoxicology and Environmental Safety, 2019, 180: 742-748. doi: 10.1016/j.ecoenv.2019.05.065
[11] REN L, LI L, CHEN S, et al. Yolk-shell Fe/FeS@SiO2 particles with enhanced dispersibility, transportability and degradation of TBBPA [J]. Catalysis Today, 2019, 327: 2-9. doi: 10.1016/j.cattod.2018.10.023
[12] YU Y, YU Z, CHEN H, et al. Tetrabromobisphenol A: Disposition, kinetics and toxicity in animals and humans [J]. Environmental Pollution, 2019, 253: 909-917. doi: 10.1016/j.envpol.2019.07.067
[13] YU Y, LIU L, CHEN X, et al. Brominated flame retardants and heavy metals in common aquatic products from the pearl river delta, south china: Bioaccessibility assessment and human health implications [J]. Journal of Hazardous Materials, 2021, 403 124036.
[14] 张萌, 吕耀斌, 朱一滔, 等. 去灰分对生物炭理化性质及芳香族污染物吸附的影响 [J]. 环境化学, 2020, 39(11): 3161-3170. ZHANG M, LYU Y B, ZHU Y T, et al. Impact of deaching treatment on biochar physicochemical properties and sorption mechanisms of aromatic pollutants [J]. Environmental Chemistry, 2020, 39(11): 3161-3170(in Chinese).
[15] UHNÁKOVÁ B, LUDWIG R, PĚKNICOVÁ J, et al. Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products [J]. Bioresource Technology, 2011, 102(20): 9409-9415. doi: 10.1016/j.biortech.2011.07.036
[16] ZHU X, HUANG M, ZHANG Q, et al. Proposal of possible pathway of fluorene biodegrada-tion by Citrobacter sp. FL5 [J]. Applied Envrionmental Biotechnology, 2016, 1(1): 44-51. doi: 10.26789/AEB.2016.01.009
[17] YU Y, HUANG Z, DENG D, et al. Synthesis of millimeter-scale sponge Fe/Cu bimetallic particles removing TBBPA and insights of degradation mechanism [J]. Chemical Engineering Journal, 2017, 325 279-288.
[18] 章琴琴, 丁世敏, 封享华, 等. Fenton法降解邻苯二甲酸二甲酯的动力学特征及其影响因素研究 [J]. 环境化学, 2020, 39(11): 3009-3016. doi: 10.7524/j.issn.0254-6108.2019082201 ZHANG Q Q, DING S M, FENG X H, et al. Study on the kinetic characteristics and influencing factors of degradation of dimethyl phthalate by Fenton treatmet [J]. Environmental Chemistry, 2020, 39(11): 3009-3016(in Chinese). doi: 10.7524/j.issn.0254-6108.2019082201
[19] LI T, HE Y, PENG X. Efficient removal of tetrabromobisphenol A (TBBPA) using sewage sludge-derived biochar: Adsorptive effect and mechanism [J]. Chemosphere, 2020, 251: 126370. doi: 10.1016/j.chemosphere.2020.126370
[20] SHAO P, PEI J, TANG H, et al. Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol A via long-range hydrophobic interaction synergized with short-range dispersion force [J]. Journal of Hazardous Materials, 2021, 403: 123705. doi: 10.1016/j.jhazmat.2020.123705
[21] 张伟. 基于葡萄糖水热法制备功能性纳米材料及其应用的研究 [D]. 天津: 天津大学, 2012. ZHANG W. Preparation and application of functional nanomaterials base on the hydrothermal process of glucose[D]. Tianjin: Tianjin University, 2012(in Chinese).
[22] HAMEED B H, TAN I A W, AHMAD A L. Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon [J]. Chemical Engineering Journal, 2008, 144(2): 235-224. doi: 10.1016/j.cej.2008.01.028
[23] HERNANDEZ-ORTIZ M, DURÁN-MUÑOZ H A, LOZANO-LÓPEZ J D, et al. Determination of the surface functionality of nanocarbon allotropes by boehm titration [J]. Surface Review and Letters, 2020, 27(8): 1950190. doi: 10.1142/S0218625X19501907
[24] 陈薇, 肖高, 郭杰, 等. 煤基活性炭表面改性对稀土负载型CeO_2/AC低温脱硝性能的影响 [J]. 环境工程学报, 2018, 12(7): 1959-1967. doi: 10.12030/j.cjee.201712188 CHEN W, XIAO G, GUO J, et al. Effect of surface modification of coal based activated carbon on low temperature denitration perform ance of rare-earth supported CeO2/AC [J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1959-1967(in Chinese). doi: 10.12030/j.cjee.201712188
[25] 刘寒冰, 杨兵, 薛南冬. 酸碱改性活性炭及其对甲苯吸附的影响 [J]. 环境科学, 2016, 37(9): 3670-3678. LIU H B, YANG B, XUE N D. Effects of acidic and basic modification on activated carbon for adsorption of toluene [J]. Environmental Science, 2016, 37(9): 3670-3678(in Chinese).
[26] 丁春生, 沈嘉辰, 缪佳, 等. 改性活性炭吸附饮用水中三氯硝基甲烷的研究 [J]. 中国环境科学, 2013, 33(5): 821-826. doi: 10.3969/j.issn.1000-6923.2013.05.008 DING C S, SHEN J C, LIAO J, et al. Adsorption of trichloronitromethane in drinking water by modified activated carbon [J]. China Environmental Science, 2013, 33(5): 821-826(in Chinese). doi: 10.3969/j.issn.1000-6923.2013.05.008
[27] JUNG H J, CHOI M Y. One-pot synthesis of graphitic and nitrogen-doped graphitic layers on nickel nanoparticles produced by pulsed laser ablation in liquid: Solvent as the carbon and nitrogen source [J]. Applied Surface Science, 2018, 457: 1050-1056. doi: 10.1016/j.apsusc.2018.07.036
[28] 刘丽, 石宝友, 盖克, 等. 化学改性活性炭对水中阿特拉津的吸附去除 [J]. 环境工程学报, 2012, 6(8): 2483-2488. LIU L, SHI B Y, GAI K, et al. Adsorption removal of atrazine from water by chemically modified activated carbons [J]. Chinese Journal of Environmental Engineering, 2012, 6(8): 2483-2488(in Chinese).
[29] 许琦, 侯亚芹, 郭倩倩, 等. 活性炭表面含氧官能团对燃煤烟气氮氧化物脱除的影响 [J]. 环境化学, 2020, 39(8): 2105-2111. doi: 10.7524/j.issn.0254-6108.2019060505 XU Q, HOU Y Q, GUO Q Q, et al. Effect of oxygen-containing functional groups on the removal of nitrogen oxides from coal-fired flue gas on activated carbon [J]. Environmental Chemistry, 2020, 39(8): 2105-2111(in Chinese). doi: 10.7524/j.issn.0254-6108.2019060505
[30] XIAO G, WEN R, YOU P, et al. Adsorption of phenol onto four hyper-cross-linked polymeric adsorbents: Effect of hydrogen bonding receptor in micropores on adsorption capacity [J]. Microporous and Mesoporous Materials, 2017, 239: 40-44. doi: 10.1016/j.micromeso.2016.09.044
[31] 付婷, 凌小佳, 丁莹, 等. 改性介孔碳对饮用水中3种指标吸附性能分析 [J]. 环境科学与技术, 2017, 40(10): 49-55. FU T, LING X J, DING Y, et al. Adsorption performance analysis of modified mesoporous carbon on three indexs in drinking water [J]. Environmental Science & Technology, 2017, 40(10): 49-55(in Chinese).
[32] 张华. 头孢类抗生素在改性活性炭上的吸附 [D]. 北京: 北京化工大学, 2015. ZHANG H. Adsorption of cephalosporin antibiotics on modified activated carbon[D]. Beijing: Beijing University of Chemical Technology, 2015(in Chinese).
[33] YANG Z, WU W, YU L, et al. Fabrication and characterization of magnetically responsive Fe3O4@TiO2 core-shell adsorbent for enhanced thallium removal [J]. Environmental Science and Pollution Research, 2020, 27(24): 30518-30529. doi: 10.1007/s11356-020-09144-x
[34] 高珊珊, 赵竟博, 田家宇, 等. 化学改性对活性炭吸附磺胺甲恶唑和布洛芬的影响 [J]. 环境工程学报, 2015, 9(10): 4650-4654. doi: 10.12030/j.cjee.20151007 GAO S S, ZHAO J B, TIAN J Y, et al. Influence of chemical modification on activated carbon for adsorption of sulfamethoxazole and ibuprofen [J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4650-4654(in Chinese). doi: 10.12030/j.cjee.20151007
[35] YU Y, WANG C, GUO X, et al. Modification of carbon derived from Sargassum sp. by lanthanum for enhanced adsorption of fluoride [J]. Journal of Colloid And Interface Science, 2015, 441: 113-120. doi: 10.1016/j.jcis.2014.10.039
[36] LINBO Q, BAOLIANG C. Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles [J]. Environmental Science & Technology, 2013, 47(15): 8759-8768.
[37] TANG J, LV H, GONG Y, et al. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal [J]. Bioresource Technology, 2015, 196: 355-363. doi: 10.1016/j.biortech.2015.07.047
[38] WU T, CAI X, TAN S, et al. Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions [J]. Chemical Engineering Journal, 2011, 173(1): 144-149. doi: 10.1016/j.cej.2011.07.050
[39] HONGHONG L, BIN G, FENG H, et al. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms [J]. Environmental Pollution, 2018, 233: 54-63. doi: 10.1016/j.envpol.2017.10.037
[40] 潘建, 潘顺龙, 刘志英, 等. 氮掺杂碳材料的制备及催化降解苯酚废水实验研究 [J]. 现代化工, 2020, 40(11): 131-135. PAN J, PAN S L, LIU Z Y, et al. Preparation of nitrogen-doped carbon materials and application in catalytic degradation of phenolcontaining wastewater [J]. Modern Chemical Industry, 2020, 40(11): 131-135(in Chinese).
[41] LI J M, MENG X G, HU C W, et al. Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan [J]. Bioresource Technology, 2009, 100(3): 1168-1173. doi: 10.1016/j.biortech.2008.09.015
[42] ZHANG G, FAN F, LI X, et al. Superior adsorption of thallium(I) on titanium peroxide: Performance and mechanism [J]. Chemical Engineering Journal, 2018, 331: 355-363. doi: 10.1016/j.cej.2017.08.100
[43] FASFOUS I I, RADWAN E S, DAWOUD J N. Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes [J]. Applied Surface Science, 2010, 256(23): 7246-7252. doi: 10.1016/j.apsusc.2010.05.059
[44] 方梦园, 赵天慧, 赵晓丽, 等. 碳纳米管对腐殖酸的吸附及其环境意义 [J]. 环境化学, 2020, 39(10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002 FANG M Y, ZHAO T H, ZHAO X L, et al. Effect of humic acid on adsorption and sedimentation of carboxylic multi-walled carbon nanotubes with different diameters [J]. Environmental Chemistry, 2020, 39(10): 2897-2906(in Chinese). doi: 10.7524/j.issn.0254-6108.2019111002
[45] JI L L, CHANG W, ZHANG S R, et al. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes [J]. Langmuir:the ACS journal of surfaces and colloids, 2009, 25(19): 11608-11613. doi: 10.1021/la9015838
[46] SEOKJOON K, YU L. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): Attenuation of surface activity by humic and fulvic acids [J]. Environmental Science & Technology, 2006, 40(24): 7757-7763.
[47] ZHANG M, SHU L, GUO X, et al. Impact of humic acid coating on sorption of naphthalene by biochars [J]. Carbon, 2015, 94: 946-954. doi: 10.1016/j.carbon.2015.07.079
[48] XIE M, CHEN W, XU Z, et al. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions [J]. Environmental Pollution, 2014, 186: 187-194. doi: 10.1016/j.envpol.2013.11.022
[49] FENGLING L, ZHAOYI X, HAIQIN W, et al. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon [J]. Environmental Toxicology and Chemistry, 2011, 30(4): 793-800. doi: 10.1002/etc.450
[50] KASOZI, ZIMMER A, PETER N K, et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) [J]. Environmental Science & Technology, 2010, 44(16): 6189-6195.