[1] LIU J, ZHAO Z W, SHAO P H et al. Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation [J]. Chemical Engineering Journal, 2015, 262: 854-861. doi: 10.1016/j.cej.2014.10.043
[2] AO X W, LIU W J. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide [J]. Chemical Engineering Journal, 2017, 313: 629-637. doi: 10.1016/j.cej.2016.12.089
[3] LIU J, ZHOU J H, DING Z X, et al. Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4 for degradation of azo dye [J]. Ultrasonics Sonochemistry, 2017, 34: 953-959. doi: 10.1016/j.ultsonch.2016.08.005
[4] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review [J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064
[5] LISON D. Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease) [J]. Critical Reviews in Toxicology, 1996, 26(6): 585-616. doi: 10.3109/10408449609037478
[6] ZENG T, ZHANG X L, WANG S H, et al. Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants [J]. Environmental Science & Technology, 2015, 49(4): 2350-2357.
[7] 苏跃涵, 张利朋, 王枫亮, 等. Fe2+/单过氧硫酸氢盐(PMS)体系降解水体中酮洛芬的机制研究 [J]. 环境化学, 2016, 35(9): 1753-1761. doi: 10.7524/j.issn.0254-6108.2016.09.2016030301 SU Y H, ZHANG L P, WANG F L, et al. Degradation mechanism of ketoprofen by Fe2+/potassium peroxy monosulfate (PMS) oxidation process in aqueous [J]. Environmental Chemistry, 2016, 35(9): 1753-1761(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016030301
[8] TAN C Q, GAO N Y, DENG Y, et al. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate [J]. Journal of Hazardous Materials, 2014, 276: 452-460. doi: 10.1016/j.jhazmat.2014.05.068
[9] LI J, WAN Y J, LI Y J et al. Surface Fe(Ⅲ)/Fe(Ⅱ) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine [J]. Applied Catalysis B:Environmental, 2019, 256: 117782. doi: 10.1016/j.apcatb.2019.117782
[10] MERKI D, VRUBEL H, ROVELLI L et al. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution [J]. Chemical Science, 2012, 3(8): 2515-2525. doi: 10.1039/c2sc20539d
[11] XING M Y, XU W J, DONG C C et al. Metal sulfides as excellent Co-catalysts for H2O2 decomposition in advanced oxidation processes [J]. Chem, 2018, 4(6): 1359-1372. doi: 10.1016/j.chempr.2018.03.002
[12] ZHU L L, JI J H, LIU J et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control [J]. Angewandte Chemie-International Edition, 2020, 59(33): 13968-13976. doi: 10.1002/anie.202006059
[13] DING L, LU X, DENG H P, et al. Adsorptive removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) from aqueous solutions using MIEX resin [J]. Industrial & Engineering Chemistry Research, 2012, 51(34): 11226-11235.
[14] SECK E I, DONA-RODRIGUEZ J M, FERNANDEZ-RODRIGUEZ C et al. Photocatalytic removal of 2, 4-dichlorophenoxyacetic acid by using sol–gel synthesized nanocrystalline and commercial TiO2: Operational parameters optimization and toxicity studies [J]. Applied Catalysis B:Environmental, 2012, 125: 28-34. doi: 10.1016/j.apcatb.2012.05.028
[15] MU D Z, CHEN Z, SHI H F, et al. Construction of flower-like MoS2/Fe3O4/rGO composite with enhanced photo-Fenton like catalyst performance [J]. RSC Advances, 2018, 8(64): 36625-36631. doi: 10.1039/C8RA06537C
[16] LIN T R, WANG J, GUO L Q, et al. Fe3O4@MoS2 core-shell composites: Preparation, characterization, and catalytic application [J]. The Journal of Physical Chemistry C, 2015, 119(24): 13658-13664. doi: 10.1021/acs.jpcc.5b02516
[17] WANG Y, LI S, XING X et al. Self-assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core–shell architectures and their enhanced photocatalytic activity under visible light [J]. Chemistry A European Journal, 2011, 17(17): 4802-4808. doi: 10.1002/chem.201001846
[18] ZHANG Y, NIU J, XU J. Fe(Ⅱ)-promoted activation of peroxymonosulfate by molybdenum disulfide for effective degradation of acetaminophen [J]. Chemical Engineering Journal, 2020, 381: 122718. doi: 10.1016/j.cej.2019.122718
[19] LUO H P, ZHOU X, GUO X J, et al. WS2 as highly active co-catalyst for the regeneration of Fe(Ⅱ) in the advanced oxidation processes [J]. Chemosphere, 2021, 262: 128067. doi: 10.1016/j.chemosphere.2020.128067
[20] REN Y, LIN L, MA J et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water [J]. Applied Catalysis B:Environmental, 2015, 165: 572-578. doi: 10.1016/j.apcatb.2014.10.051
[21] HUANG Y, SHENG B, WANG Z H et al. Deciphering the degradation/chlorination mechanisms of maleic acid in the Fe(ⅡI)/peroxymonosulfate process: An often overlooked effect of chloride [J]. Water Research, 2018, 145: 453-463. doi: 10.1016/j.watres.2018.08.055
[22] XIE P C, MA J, LIU W et al. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals [J]. Water Research, 2015, 69: 223-233. doi: 10.1016/j.watres.2014.11.029
[23] LEI Y, CHEN C S, TU Y J, et al. Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: Mechanism, stability, and effects of pH and bicarbonate ions [J]. Environmental Science & Technology, 2015, 49(11): 6838-6845.
[24] MA W J, WANG N, DU Y C et al. One-step synthesis of novel Fe3C@nitrogen-doped carbon nanotubes/graphene nanosheets for catalytic degradation of Bisphenol A in the presence of peroxymonosulfate [J]. Chemical Engineering Journal, 2019, 356: 1022-1031. doi: 10.1016/j.cej.2018.09.093
[25] ZHOU H Y, LAI L D, WAN Y J et al. Molybdenum disulfide (MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine [J]. Chemical Engineering Journal, 2020, 384: 123264. doi: 10.1016/j.cej.2019.123264