[1] SCHWARTZ D, COLLINS F. Environmental biology and human disease [J]. Science, 2007, 316(5825): 695. doi: 10.1126/science.1141331
[2] FARAZI P A, DEPINHO R A. Hepatocellular carcinoma pathogenesis: From genes to environment [J]. Nature Reviews Cancer, 2006, 6(9): 674-687. doi: 10.1038/nrc1934
[3] SWINBURN B A, SACKS G, HALL K D, et al. The global obesity pandemic: Shaped by global drivers and local environments [J]. The Lancet, 2011, 378(9793): 804-814. doi: 10.1016/S0140-6736(11)60813-1
[4] KAMPA M, CASTANAS E. Human health effects of air pollution [J]. Environmental Pollution, 2008, 151(2): 362-367. doi: 10.1016/j.envpol.2007.06.012
[5] PIHLSTROM B L, MICHALOWICZ B S, JOHNSON N W. Periodontal diseases [J]. The Lancet, 2005, 366(9499): 1809-1820. doi: 10.1016/S0140-6736(05)67728-8
[6] SMITH K R, CORVALÁN C F, KJELLSTRÖM T. How much global ill health is attributable to environmental factors? [J]. Epidemiology, 1999, 10(5):573-584.
[7] VALKO M, RHODES C J, MONCOL J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer [J]. Chemico-Biological Interactions, 2006, 160(1): 1-40. doi: 10.1016/j.cbi.2005.12.009
[8] LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale [J]. Nature, 2015, 525(7569): 367-371. doi: 10.1038/nature15371
[9] VINEIS P. A self-fulfilling prophecy: Are we underestimating the role of the environment in gene–environment interaction research? [J]. International Journal of Epidemiology, 2004, 33(5): 945-946. doi: 10.1093/ije/dyh277
[10] WILD C P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology [J]. Cancer Epidemiology Biomarkers & Prevention, 2005, 14(8): 1847.
[11] WILD C P. The exposome: From concept to utility [J]. International Journal of Epidemiology, 2012, 41(1): 24-32. doi: 10.1093/ije/dyr236
[12] PATEL C J, BHATTACHARYA J, BUTTE A J. An environment-wide association study (EWAS) on type 2 diabetes mellitus [J]. PLOS ONE, 2010, 5(5): e10746. doi: 10.1371/journal.pone.0010746
[13] RAPPAPORT S M. Biomarkers intersect with the exposome [J]. Biomarkers, 2012, 17(6): 483-489. doi: 10.3109/1354750X.2012.691553
[14] LYNCH S M, MITRA N, ROSS M, et al. A neighborhood-wide association study (NWAS): Example of prostate cancer aggressiveness [J]. PLOS ONE, 2017, 12(3): e0174548. doi: 10.1371/journal.pone.0174548
[15] MOONEY S J, JOSHI S, CERDá M, et al. Contextual correlates of physical activity among older adults: A neighborhood environment-wide association study (NE-WAS) [J]. Cancer Epidemiology Biomarkers & Prevention, 2017, 26(4): 495.
[16] 白志鹏, 陈莉, 韩斌. 暴露组学的概念与应用 [J]. 环境与健康杂志, 2015, 32(1): 1-9. BAI Z P, CHEN L, HAN B. Exposome and exposomics: from concepts to application [J]. Journal of Environment and Health, 2015, 32(1): 1-9(in Chinese).
[17] PATEL C J, CULLEN M R, IOANNIDIS J P A, et al. Systematic evaluation of environmental factors: Persistent pollutants and nutrients correlated with serum lipid levels [J]. International Journal of Epidemiology, 2012, 41(3): 828-843. doi: 10.1093/ije/dys003
[18] PATEL C J, REHKOPF D H, LEPPERT J T, et al. Systematic evaluation of environmental and behavioural factors associated with all-cause mortality in the United States National Health and Nutrition Examination Survey [J]. International Journal of Epidemiology, 2013, 42(6): 1795-1810. doi: 10.1093/ije/dyt208
[19] LIND P M, RISéRUS U, SALIHOVIC S, et al. An environmental wide association study (EWAS) approach to the metabolic syndrome [J]. Environment International, 2013, 55: 1-8. doi: 10.1016/j.envint.2013.01.017
[20] PATEL C J, YANG T, HU Z, et al. Investigation of maternal environmental exposures in association with self-reported preterm birth [J]. Reproductive Toxicology, 2014, 45: 1-7. doi: 10.1016/j.reprotox.2013.12.005
[21] PATEL C J, MANRAI A K, CORONA E, et al. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length [J]. International Journal of Epidemiology, 2016, 46(1): 44-56.
[22] ZHONG Y, JIANG C, CHENG K K, et al. Environment-wide association study to identify factors associated with hematocrit: Evidence from the Guangzhou Biobank Cohort Study [J]. Annals of Epidemiology, 2016, 26(9): 638-642.e632. doi: 10.1016/j.annepidem.2016.07.005
[23] MCGINNIS D P, BROWNSTEIN J S, PATEL C J. Environment-wide association study of blood pressure in the National Health and Nutrition Examination Survey (1999–2012) [J]. Scientific Reports, 2016, 6(1): 30373. doi: 10.1038/srep30373
[24] BALAZARD F, LE FUR S, VALTAT S, et al. Association of environmental markers with childhood type 1 diabetes mellitus revealed by a long questionnaire on early life exposures and lifestyle in a case–control study [J]. BMC Public Health, 2016, 16(1): 1021. doi: 10.1186/s12889-016-3690-9
[25] WULANINGSIH W, VAN HEMELRIJCK M, TSILIDIS K K, et al. Investigating nutrition and lifestyle factors as determinants of abdominal obesity: An environment-wide study [J]. International Journal of Obesity, 2017, 41(2): 340-347. doi: 10.1038/ijo.2016.203
[26] ZHUANG X, GUO Y, NI A, et al. Toward a panoramic perspective of the association between environmental factors and cardiovascular disease: An environment-wide association study from National Health and Nutrition Examination Survey 1999–2014 [J]. Environment International, 2018, 118: 146-153. doi: 10.1016/j.envint.2018.05.046
[27] ZHUANG X, NI A, LIAO L, et al. Environment-wide association study to identify novel factors associated with peripheral arterial disease: Evidence from the National Health and Nutrition Examination Survey (1999–2004) [J]. Atherosclerosis, 2018, 269: 172-177. doi: 10.1016/j.atherosclerosis.2018.01.006
[28] PATEL C J, BHATTACHARYA J, IOANNIDIS J P A, et al. Systematic identification of correlates of HIV infection: An x-wide association study [J]. AIDS, 2018, 32(7):933-943.
[29] 郭静. 孕妇全血多金属暴露与甲状腺激素的关系研究[D]. 杭州: 浙江大学, 163, 2019. GUO J. Relationships between blood metal exposure and thyroid hormones in pregnant woman[D]. Hangzhou: Zhejiang University, 2019 (in Chinese).
[30] WAREMBOURG C, MAITRE L, TAMAYO-URIA I, et al. Early-life environmental exposures and blood pressure in children [J]. Journal of the American College of Cardiology, 2019, 74(10): 1317-1328. doi: 10.1016/j.jacc.2019.06.069
[31] CHUNG M K, BUCK LOUIS G M, KANNAN K, et al. Exposome-wide association study of semen quality: Systematic discovery of endocrine disrupting chemical biomarkers in fertility require large sample sizes [J]. Environment International, 2019, 125: 505-514. doi: 10.1016/j.envint.2018.11.037
[32] NIEUWENHUIJSEN M J, AGIER L, BASAGANA X, et al. Influence of the urban exposome on birth weight [J]. Environmental Health Perspectives, 2019, 127(4): 47007. doi: 10.1289/EHP3971
[33] AGIER L, BASAGAÑA X, MAITRE L, et al. Early-life exposome and lung function in children in europe: An analysis of data from the longitudinal, population-based HELIX cohort [J]. The Lancet Planetary Health, 2019, 3(2): e81-e92. doi: 10.1016/S2542-5196(19)30010-5
[34] NI M Y, YAO X I, CHEUNG F, et al. Determinants of physical, mental and social well-being: A longitudinal environment-wide association study [J]. International Journal of Epidemiology, 2019, 49(2): 380-389.
[35] HU H, ZHAO J, SAVITZ D A, et al. An external exposome-wide association study of hypertensive disorders of pregnancy [J]. Environment International, 2020, 141: 105797. doi: 10.1016/j.envint.2020.105797
[36] VRIJHEID M, FOSSATI S, MAITRE L, et al. Early-life environmental exposures and childhood obesity: An exposome-wide approach [J]. Environmental Health Perspectives, 2020, 128(6): 67009. doi: 10.1289/EHP5975
[37] AGIER L, BASAGAñA X, HERNANDEZ-FERRER C, et al. Association between the pregnancy exposome and fetal growth [J]. International Journal of Epidemiology, 2020, 49(2): 572-586. doi: 10.1093/ije/dyaa017
[38] LEE J, OH S, KANG H, et al. Environment-wide association study of CKD [J]. Clinical Journal of the American Society of Nephrology, 2020, 15(6): 766. doi: 10.2215/CJN.06780619
[39] LOPEZ D S, WULANINGSIH W, TSILIDIS K K, et al. Environment-wide association study to comprehensively test and validate associations between nutrition and lifestyle factors and testosterone deficiency: NHANES 1988–1994 and 1999–2004 [J]. Hormones, 2020, 19(2): 205-214. doi: 10.1007/s42000-020-00179-w
[40] SHEEHAN A, FRENI STERRANTINO A, FECHT D, et al. Childhood type 1 diabetes: An environment-wide association study across England [J]. Diabetologia, 2020, 63(5): 964-976. doi: 10.1007/s00125-020-05087-7
[41] CALAMANDREI G, RICCERI L, MECCIA E, et al. Pregnancy exposome and child psychomotor development in three European birth cohorts [J]. Environmental Research, 2020, 181: 108856. doi: 10.1016/j.envres.2019.108856
[42] VRIJHEID M, SLAMA R, ROBINSON O, et al. The human early-life exposome (HELIX): Project rationale and design [J]. Environmental Health Perspectives, 2014, 122(6): 535-544. doi: 10.1289/ehp.1307204
[43] CARPENTER D O. Environmental contaminants as risk factors for developing diabetes [J]. Reviews on Environmental Health, 2008, 23(1): 59-74.
[44] GIBELIN C, COURAUD S. Somatic alterations in lung cancer: Do environmental factors matter? [J]. Lung Cancer, 2016, 100: 45-52. doi: 10.1016/j.lungcan.2016.07.015
[45] LOEB S, PESKOE S B, JOSHU C E, et al. Do environmental factors modify the genetic risk of prostate cancer? [J]. Cancer Epidemiol Biomarkers & Prevention, 2015, 24(1): 213-220.
[46] KAHN L G, TRASANDE L. Environmental toxicant exposure and hypertensive disorders of pregnancy: Recent findings [J]. Current Hypertension Reports, 2018, 20(10): 87. doi: 10.1007/s11906-018-0888-5
[47] PORPORA M G, PIACENTI I, SCARAMUZZINO S, et al. Environmental contaminants exposure and preterm birth: A systematic review [J]. Toxics, 2019, 7(1): 11. doi: 10.3390/toxics7010011
[48] ROBINSON O, VRIJHEID M. The pregnancy exposome [J]. Current Environmental Health Reports, 2015, 2(2): 204-213. doi: 10.1007/s40572-015-0043-2
[49] BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing [J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 1995, 57(1): 289-300.
[50] BONFERRONI C. Teoria statistica delle classi e calcolo delle probabilit?? [J]. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 1935: 8.
[51] SANDRA E S, MARK J V D L. Deletion/substitution/addition algorithm in learning with applications in genomics [J]. Statistical Applications in Genetics and Molecular Biology, 2004, 3(1): 16646796.
[52] AGIER L, PORTENGEN L, CHADEAU-HYAM M, et al. A systematic comparison of linear regression–based statistical methods to assess exposome-health associations [J]. Environmental Health Perspectives, 2016, 124(12): 1848-1856. doi: 10.1289/EHP172
[53] BARRERA-GóMEZ J, AGIER L, PORTENGEN L, et al. A systematic comparison of statistical methods to detect interactions in exposome-health associations [J]. Environmental Health, 2017, 16(1): 74. doi: 10.1186/s12940-017-0277-6
[54] BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
[55] MCCALL M R, FREI B. Can antioxidant vitamins materially reduce oxidative damage in humans? [J]. Free Radical Biology and Medicine, 1999, 26(7): 1034-1053.
[56] CHAPMAN M J, GINSBERG H N, AMARENCO P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management [J]. European Heart Journal, 2011, 32(11): 1345-1361. doi: 10.1093/eurheartj/ehr112
[57] YOUNG A J, LOWE G M. Antioxidant and prooxidant properties of carotenoids [J]. Archives of Biochemistry and Biophysics, 2001, 385(1): 20-27. doi: 10.1006/abbi.2000.2149
[58] COLLINS A R. Carotenoids and genomic stability [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 475(1): 21-28.
[59] 范晓岚, 杨军, 糜漫天, 等. β-胡萝卜素的抗氧化作用与疾病预防 [J]. 中国公共卫生, 2003(4): 99-100. FAN X L, YANG J, MI M T, et al. Antioxidant effect and disease prevention of beta-carotene [J]. Chinese Journal of Public Health, 2003(4): 99-100(in Chinese).
[60] VIVEKANANTHAN D P, PENN M S, SAPP S K, et al. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta-analysis of randomised trials [J]. The Lancet, 2003, 361(9374): 2017-2023. doi: 10.1016/S0140-6736(03)13637-9
[61] RAO A V, RAO L G. Carotenoids and human health [J]. Pharmacological Research, 2007, 55(3): 207-216. doi: 10.1016/j.phrs.2007.01.012
[62] NI P, YU M, ZHANG R, et al. Dose-response association between C-reactive protein and risk of all-cause and cause-specific mortality: A systematic review and meta-analysis of cohort studies [J]. Annals of Epidemiology, 2020, 51: 20-27. doi: 10.1016/j.annepidem.2020.07.005
[63] ZUO H, UELAND P M, ULVIK A, et al. Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: The Hordaland health study [J]. American Journal of Epidemiology, 2016, 183(4): 249-258. doi: 10.1093/aje/kwv242
[64] KAPTOGE S, DI ANGELANTONIO E, LOWE G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis [J]. The Lancet, 2010, 375(9709): 132-140. doi: 10.1016/S0140-6736(09)61717-7
[65] AVAN A, TAVAKOLY SANY S B, GHAYOUR-MOBARHAN M, et al. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice [J]. Journal of Cellular Physiology, 2018, 233(11): 8508-8525. doi: 10.1002/jcp.26791
[66] BRAUN J, BOPP M, FAEH D. Blood glucose may be an alternative to cholesterol in CVD risk prediction charts [J]. Cardiovascular Diabetology, 2013, 12(1): 24. doi: 10.1186/1475-2840-12-24
[67] NDREPEPA G. Uric acid and cardiovascular disease [J]. Clinica Chimica Acta, 2018, 484: 150-163. doi: 10.1016/j.cca.2018.05.046
[68] ROCCO A, HEERLEIN K, DIEDLER J, et al. Microalbuminuria in cerebrovascular disease: A modifiable risk factor? [J]. International Journal of Stroke, 2010, 5(1): 30-34. doi: 10.1111/j.1747-4949.2009.00398.x
[69] BRITO J, BERNARDO A, ZAGALO C, et al. Quantitative analysis of air pollution and mortality in Portugal: Current trends and links following proposed biological pathways [J]. Science of the Total Environment, 2021, 755: 142473. doi: 10.1016/j.scitotenv.2020.142473
[70] GUERCIO V, POJUM I C, LEONARDI G S, et al. Exposure to indoor and outdoor air pollution from solid fuel combustion and respiratory outcomes in children in developed countries: A systematic review and meta-analysis [J]. Science of the Total Environment, 2021, 755: 142187. doi: 10.1016/j.scitotenv.2020.142187
[71] XU X, NIE S, DING H, et al. Environmental pollution and kidney diseases [J]. Nature Reviews Nephrology, 2018, 14(5): 313-324. doi: 10.1038/nrneph.2018.11
[72] ISLAM R, KUMAR S, KARMOKER J, et al. Bioaccumulation and adverse effects of persistent organic pollutants (POPs) on ecosystems and human exposure: A review study on Bangladesh perspectives [J]. Environmental Technology & Innovation, 2018, 12: 115-131.
[73] MANSOURI E H, REGGABI M. Association between type 2 diabetes and exposure to chlorinated persistent organic pollutants in algeria: A case-control study [J]. Chemosphere, 2021, 264: 128596. doi: 10.1016/j.chemosphere.2020.128596
[74] LIANG Y, LIU D, ZHAN J, et al. New insight into the mechanism of pop-induced obesity: Evidence from DDE-altered microbiota [J]. Chemosphere, 2020, 244: 125123. doi: 10.1016/j.chemosphere.2019.125123
[75] PESTANA D, TEIXEIRA D, MEIRELES M, et al. Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p, p’-DDE [J]. Scientific Reports, 2017, 7(1): 2738. doi: 10.1038/s41598-017-02885-9
[76] LANGER P, UKROPEC J, KOCAN A, et al. Obesogenic and diabetogenic impact of high organochlorine levels (HCB, p, p'-DDE, PCBs) on inhabitants in the highly polluted eastern Slovakia [J]. Endocr Regul, 2014, 48(1): 17-24. doi: 10.4149/endo_2014_01_17
[77] 段义爽, 孙红文. 环境有机污染物与糖尿病关系的研究进展 [J]. 环境化学, 2017, 36(4): 753-766. doi: 10.7524/j.issn.0254-6108.2017.04.2016080407 DUAN Y S, SUN H W. Studies on the associations between environmental organic pollutants and diabetes [J]. Environmental Chemistry, 2017, 36(4): 753-766(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.04.2016080407
[78] KUNG Y P, LIN C C, CHEN M H, et al. Intrauterine exposure to per- and polyfluoroalkyl substances may harm children's lung function development [J]. Environmental Research, 2021, 192: 110178. doi: 10.1016/j.envres.2020.110178
[79] RUBIN B S. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(1): 27-34.
[80] 王硕, 庄太凤. 双酚A对新生儿的健康危害 [J]. 环境化学, 2020, 39(9): 2404-2412. doi: 10.7524/j.issn.0254-6108.2019070602 WANG S, ZHUANG T F. Health effects of bisphenol A on newborns [J]. Environmental Chemistry, 2020, 39(9): 2404-2412(in Chinese). doi: 10.7524/j.issn.0254-6108.2019070602
[81] BEHNIA F, PELTIER M, GETAHUN D, et al. High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery [J]. Journal of Maternal Fetal & Neonatal Medicine, 2016, 29(22): 3583-3589.
[82] XU C, WENG Z, ZHANG L, et al. HDL cholesterol: A potential mediator of the association between urinary cadmium concentration and cardiovascular disease risk [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111433. doi: 10.1016/j.ecoenv.2020.111433
[83] SATARUG S, G C G, D A V, et al. Cadmium and lead exposure, nephrotoxicity, and mortality [J]. Toxics, 2020, 8(4): 86. doi: 10.3390/toxics8040086
[84] COWELL W, COLICINO E, TANNER E, et al. Prenatal toxic metal mixture exposure and newborn telomere length: Modification by maternal antioxidant intake [J]. Environmental Research, 2020, 190: 110009. doi: 10.1016/j.envres.2020.110009
[85] LIM S S, VOS T, FLAXMAN A D, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010 [J]. The Lancet, 2012, 380(9859): 2224-2260. doi: 10.1016/S0140-6736(12)61766-8
[86] GRUER L, HART C L, WATT G C M. After 50 years and 200 papers, what can the midspan cohort studies tell us about our mortality? [J]. Public Health, 2017, 142: 186-195. doi: 10.1016/j.puhe.2015.06.017
[87] ABDULKHAKOV S R, ARKHIPOV E V, FAIZULLIN R I, et al. Screening assessment of renal function status in healthy smoking volunteers [J]. BioNanoScience, 2019, 9(2): 510-514. doi: 10.1007/s12668-019-0602-3
[88] SESSO HOWARD D, COOK NANCY R, BURING JULIE E, et al. Alcohol consumption and the risk of hypertension in women and men [J]. Hypertension, 2008, 51(4): 1080-1087. doi: 10.1161/HYPERTENSIONAHA.107.104968
[89] ROERECKE M, KACZOROWSKI J, TOBE S W, et al. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis [J]. The Lancet Public Health, 2017, 2(2): e108-e120. doi: 10.1016/S2468-2667(17)30003-8
[90] REHM J, BALIUNAS D, BORGES G L G, et al. The relation between different dimensions of alcohol consumption and burden of disease: An overview [J]. Addiction, 2010, 105(5): 817-843. doi: 10.1111/j.1360-0443.2010.02899.x
[91] JIA P, XUE H, CHENG X, et al. Association of neighborhood built environments with childhood obesity: Evidence from a 9-year longitudinal, nationally representative survey in the US [J]. Environment International, 2019, 128: 158-164. doi: 10.1016/j.envint.2019.03.067
[92] YANG Y, LIN Q, LIANG Y, et al. The mediation effect of maternal glucose on the association between ambient air pollution and birth weight in Foshan, China [J]. Environmental Pollution, 2020, 266: 115128. doi: 10.1016/j.envpol.2020.115128
[93] LIN L, LI Q, YANG J, et al. The associations of particulate matters with fetal growth in utero and birth weight: A birth cohort study in Beijing, China [J]. Science of the Total Environment, 2020, 709: 136246. doi: 10.1016/j.scitotenv.2019.136246
[94] GRAZULEVICIENE R, DEDELE A, DANILEVICIUTE A, et al. The influence of proximity to city parks on blood pressure in early pregnancy [J]. International Journal of Environmental Research & Public Health, 2014, 11(3): 2958-2972.
[95] LICHTVELD K, THOMAS K, TULVE N S. Chemical and non-chemical stressors affecting childhood obesity: A systematic scoping review [J]. Journal of Exposure Science & Environmental Epidemiology, 2018, 28(1): 1-12.
[96] JIANG C, WANG X, LI X, et al. Dynamic human environmental exposome revealed by longitudinal personal monitoring [J]. Cell, 2018, 175(1): 277-291. doi: 10.1016/j.cell.2018.08.060
[97] 孙路遥, 王继忠, 彭书传, 等. 暴露组及其研究方法进展 [J]. 环境科学学报, 2016, 36(1): 27-37. SUN L Y, WANG J Z, PENG S C, et al. Approaches towards a more comprehensive understanding of human exposome [J]. Acta Scientiae Circumstantiae, 2016, 36(1): 27-37(in Chinese).
[98] ZHENG Y, CHEN Z, PEARSON T, et al. Design and methodology challenges of environment-wide association studies: A systematic review [J]. Environmental Research, 2020, 183: 109275. doi: 10.1016/j.envres.2020.109275
[99] MATTA K, VIGNEAU E, CARIOU V, et al. Associations between persistent organic pollutants and endometriosis: A multipollutant assessment using machine learning algorithms [J]. Environmental Pollution, 2020, 260: 114066. doi: 10.1016/j.envpol.2020.114066
[100] CADIOU S, BUSTAMANTE M, AGIER L, et al. Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index [J]. Environment International, 2020, 138: 105622. doi: 10.1016/j.envint.2020.105622