[1] |
HARARI Y N. Sapiens: A Brief History of Humankind[J]. New York: Harper Perennial, 2014.
|
[2] |
BANG S, CHOI J W, CHO K, et al. Simultaneous reduction of copper and toxicity in semiconductor wastewater using protonated alginate beads [J]. Chemical Engineering Journal, 2016, 288: 525-531. doi: 10.1016/j.cej.2015.12.025
|
[3] |
VIKRANT K, KUMAR V, VELLINGIRI K, et al. Nanomaterials for the abatement of cadmium (II) ions from water/wastewater [J]. Nano Research, 2019, 12(7): 1489-1507. doi: 10.1007/s12274-019-2309-8
|
[4] |
HUGHES M F. Arsenic toxicity and potential mechanisms of action [J]. Toxicology Letters, 2002, 133(1): 1-16. doi: 10.1016/S0378-4274(02)00084-X
|
[5] |
FENDORF S, MICHAEL H A, van GEEN A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia [J]. Science, 2010, 328(5982): 1123-1127. doi: 10.1126/science.1172974
|
[6] |
ZHENG Y. Global solutions to a silent poison [J]. Science, 2020, 368(6493): 818-819. doi: 10.1126/science.abb9746
|
[7] |
LARSON C. China gets serious about its pollutant-laden soil [J]. Science, 2014, 343(6178): 1415-1416. doi: 10.1126/science.343.6178.1415
|
[8] |
FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011
|
[9] |
KURNIAWAN T A, CHAN G Y S, LO W H, et al. Physico-chemical treatment techniques for wastewater laden with heavy metals [J]. Chemical Engineering Journal, 2006, 118(1/2): 83-98.
|
[10] |
SATARUG S. Long-term exposure to cadmium in food and cigarette smoke, liver effects and hepatocellular carcinoma [J]. Current Drug Metabolism, 2012, 13(3): 257-271. doi: 10.2174/138920012799320446
|
[11] |
KUMAR R, CHAWLA J. Removal of cadmium ion from water/wastewater by nano-metal oxides: A review [J]. Water Quality, Exposure and Health, 2014, 5(4): 215-226. doi: 10.1007/s12403-013-0100-8
|
[12] |
KUMAR R, CHAWLA J, KAUR I. Removal of cadmium ion from wastewater by carbon-based nanosorbents: A review [J]. Journal of Water and Health, 2015, 13(1): 18-33. doi: 10.2166/wh.2014.024
|
[13] |
van GESTEL C A M, KOOLHAAS J E. Water-extractability, free ion activity, and pH explain cadmium sorption and toxicity to Folsomia candida (Collembola) in seven soil-pH combinations [J]. Environmental Toxicology and Chemistry, 2004, 23(8): 1822-1833. doi: 10.1897/03-393
|
[14] |
HARADA M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution [J]. Critical Reviews in Toxicology, 1995, 25(1): 1-24. doi: 10.3109/10408449509089885
|
[15] |
SINGH O V, LABANA S, PANDEY G, et al. Phytoremediation: an overview of metallic ion decontamination from soil [J]. Applied Microbiology and Biotechnology, 2003, 61(5/6): 405-412.
|
[16] |
刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展 [J]. 环境化学, 2018, 37(9): 2016-2024. doi: 10.7524/j.issn.0254-6108.2017110105
LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption [J]. Environmental Chemistry, 2018, 37(9): 2016-2024(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110105
|
[17] |
KURNIAWAN T A, CHAN G Y S, LO W H, et al. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals [J]. Science of the Total Environment, 2006, 366(2/3): 409-426.
|
[18] |
PONDER S M, DARAB J G, MALLOUK T E. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron [J]. Environmental Science & Technology, 2000, 34(12): 2564-2569.
|
[19] |
KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic (Ⅲ) from groundwater by nanoscale zero-valent iron [J]. Environmental Science & Technology, 2005, 39(5): 1291-1298.
|
[20] |
LI X Q, ZHANG W X. Iron nanoparticles: The core-shell structure and unique properties for Ni(Ⅱ) sequestration [J]. Langmuir, 2006, 22(10): 4638-4642. doi: 10.1021/la060057k
|
[21] |
LIU A R, WANG W, LIU J, et al. Nanoencapsulation of arsenate with nanoscale zero-valent iron (nZVI): A 3D perspective [J]. Science Bulletin, 2018, 63(24): 1641-1648. doi: 10.1016/j.scib.2018.12.002
|
[22] |
LING L, ZHANG W X. Visualizing arsenate reactions and encapsulation in a single zero-valent iron nanoparticle [J]. Environmental Science & Technology, 2017, 51(4): 2288-2294.
|
[23] |
TANG L, FENG H P, TANG J, et al. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: The effect of environmental conditions and reaction mechanism [J]. Water Research, 2017, 117: 175-186. doi: 10.1016/j.watres.2017.03.059
|
[24] |
LING L, ZHANG W X. Enrichment and encapsulation of uranium with iron nanoparticle [J]. Journal of the American Chemical Society, 2015, 137(8): 2788-2791. doi: 10.1021/ja510488r
|
[25] |
MU Y, AI Z H, ZHANG L Z, et al. Insight into core–shell dependent anoxic Cr(Ⅵ) removal with Fe@Fe2O3 nanowires: Indispensable role of surface bound Fe(Ⅱ) [J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1997-2005.
|
[26] |
SHI L N, ZHANG X, CHEN Z L. Removal of Chromium (Ⅵ) from wastewater using bentonite-supported nanoscale zero-valent iron [J]. Water Research, 2011, 45(2): 886-892. doi: 10.1016/j.watres.2010.09.025
|
[27] |
ZHANG Y L, SU Y M, ZHOU X F, et al. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration [J]. Journal of Hazardous Materials, 2013, 263: 685-693. doi: 10.1016/j.jhazmat.2013.10.031
|
[28] |
PONDER S M, DARAB J G, BUCHER J, et al. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants [J]. Chemistry of Materials, 2001, 13(2): 479-486. doi: 10.1021/cm000288r
|
[29] |
HUANG Q, GU T H, LIU A R, et al. Probing pollutant reactions at the iron surface: A case study on selenite reactions with nanoscale zero-valent iron [J]. Environmental Science:Nano, 2021, 8(9): 2650-2659. doi: 10.1039/D1EN00458A
|
[30] |
YAN W L, RAMOS M A V, KOEL B E, et al. Multi-tiered distributions of arsenic in iron nanoparticles: Observation of dual redox functionality enabled by a core–shell structure [J]. Chemical Communications, 2010, 46(37): 6995. doi: 10.1039/c0cc02311f
|
[31] |
FAN D M, ANITORI R P, TEBO B M, et al. Reductive sequestration of pertechnetate ( $ ^{99}{\rm{TcO}}_4^-$) by nano zerovalent iron (nZVI) transformed by abiotic sulfide [J]. Environmental Science & Technology, 2013, 47(10): 5302-5310.
|
[32] |
ELLIOTT D W, ZHANG W X. Field assessment of nanoscale bimetallic particles for groundwater treatment [J]. Environmental Science & Technology, 2001, 35(24): 4922-4926.
|
[33] |
YAN W L, LIEN H L, KOEL B E, et al. Iron nanoparticles for environmental clean-up: Recent developments and future outlook [J]. Environmental Science. Processes & Impacts, 2013, 15(1): 63-77.
|
[34] |
WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs [J]. Environmental Science & Technology, 1997, 31(7): 2154-2156.
|
[35] |
邱心泓, 方战强. 修饰型纳米零价铁降解有机卤化物的研究 [J]. 化学进展, 2021, 22(增刊1): 291-297.
QIU X H, FANG Z Q. Degradation of halogenated organic compounds by modified nano zero-valent iron [J]. Progress in Chemistry, 2021, 22(增刊1): 291-297(in Chinese).
|
[36] |
ZHANG W X, WANG C B, LIEN H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles [J]. Catalysis Today, 1998, 40(4): 387-395. doi: 10.1016/S0920-5861(98)00067-4
|
[37] |
XU Y, ZHANG W X. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes [J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2238-2244.
|
[38] |
LIEN H L, ZHANG W X. Nanoscale iron particles for complete reduction of chlorinated ethenes [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 191(1/2): 97-105.
|
[39] |
LI S L, WANG W, YAN W L, et al. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: A field demonstration [J]. Environmental Science. Processes & Impacts, 2014, 16(3): 524-533.
|
[40] |
LI S L, YAN W L, ZHANG W X. Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling [J]. Green Chemistry, 2009, 11(10): 1618. doi: 10.1039/b913056j
|
[41] |
LIU A R, ZHANG W X. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) [J]. The Analyst, 2014, 139(18): 4512-4518. doi: 10.1039/C4AN00679H
|
[42] |
YAN W L, HERZING A A, KIELY C J, et al. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water [J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 96-104.
|
[43] |
WANG C M, BAER D R, AMONETTE J E, et al. Morphology and oxide shell structure of iron nanoparticles grown by sputter-gas-aggregation[J]. 2007, 18(25): 255603.
|
[44] |
ANTONY J, QIANG Y, BAER D R, et al. Synthesis and characterization of stable iron–iron oxide core–shell nanoclusters for environmental applications [J]. Journal of Nanoscience and Nanotechnology, 2006, 6(2): 568-572. doi: 10.1166/jnn.2006.925
|
[45] |
WANG C M, BAER D R, AMONETTE J E, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles [J]. Journal of the American Chemical Society, 2009, 131(25): 8824-8832. doi: 10.1021/ja900353f
|
[46] |
LIU A R, LIU J, ZHANG W X. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water [J]. Chemosphere, 2015, 119: 1068-1074. doi: 10.1016/j.chemosphere.2014.09.026
|
[47] |
LIU A R, LIU J, PAN B C, et al. Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water [J]. RSC Adv, 2014, 4(101): 57377-57382. doi: 10.1039/C4RA08988J
|
[48] |
DONG H R, JIANG Z, DENG J M, et al. Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal [J]. Water Research, 2018, 129: 51-57. doi: 10.1016/j.watres.2017.11.002
|
[49] |
LIU A R, LIU J, HAN J H, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides [J]. Journal of Hazardous Materials, 2017, 322: 129-135. doi: 10.1016/j.jhazmat.2015.12.070
|
[50] |
MAGALHÃES J M, SILVA J E, CASTRO F P, et al. Physical and chemical characterisation of metal finishing industrial wastes [J]. Journal of Environmental Management, 2005, 75(2): 157-166.
|
[51] |
刘静, 刘爱荣, 张伟贤. 纳米零价铁及其在环境介质中氧化后性质演变研究进展 [J]. 环境化学, 2014, 33(4): 576-583. doi: 10.7524/j.issn.0254-6108.2014.04.009
LIU J, LIU A R, ZHANG W X. Review on transformation of oxidized nanoscale zero valent iron in environment media [J]. Environmental Chemistry, 2014, 33(4): 576-583(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.04.009
|
[52] |
刘静, 顾天航, 王伟, 等. 纳米零价铁在水相反应中的表面化学和晶相转化 [J]. 化学学报, 2019, 77(2): 121-129. doi: 10.6023/A18100412
LIU J, GU T H, WANG W, et al. Surface chemistry and phase transformation of nanoscale zero-valent iron(nZVI) in aquatic media [J]. Acta Chimica Sinica, 2019, 77(2): 121-129(in Chinese). doi: 10.6023/A18100412
|
[53] |
黄潇月, 王伟, 凌岚, 等. 纳米零价铁与重金属的反应: “核-壳”结构在重金属去除中的作用 [J]. 化学学报, 2017, 75(6): 529-537. doi: 10.6023/A17020051
HUANG X Y, WANG W, LING L, et al. Heavy metal-nZVI reactions: The core-shell structure and applications for heavy metal treatment [J]. Acta Chimica Sinica, 2017, 75(6): 529-537(in Chinese). doi: 10.6023/A17020051
|
[54] |
LI S L, WANG W, LIU Y Y, et al. Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: A pilot-scale demonstration [J]. Chemical Engineering Journal, 2014, 254: 115-123. doi: 10.1016/j.cej.2014.05.111
|
[55] |
WANG W, LI S L, LEI H, et al. Enhanced separation of nanoscale zero-valent iron (nZVI) using polyacrylamide: Performance, characterization and implication [J]. Chemical Engineering Journal, 2015, 260: 616-622. doi: 10.1016/j.cej.2014.09.042
|
[56] |
WANG W, HUA Y L, LI S L, et al. Removal of Pb(Ⅱ) and Zn(Ⅱ) using lime and nanoscale zero-valent iron (nZVI): A comparative study [J]. Chemical Engineering Journal, 2016, 304: 79-88. doi: 10.1016/j.cej.2016.06.069
|
[57] |
LI S L, WANG W, LIANG F P, et al. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application [J]. Journal of Hazardous Materials, 2017, 322: 163-171. doi: 10.1016/j.jhazmat.2016.01.032
|
[58] |
王伟. 纳米零价铁处理重金属废水应用研究[D]. 上海: 同济大学, 2016.
WANG W. Research on the Application of Nanoscale Zero-valent Iron[D]. Shanghai: Tongji University, 2016.
|
[59] |
BOULAY N, EDWARDS M. Copper in the urban water cycle [J]. Critical Reviews in Environmental Science and Technology, 2000, 30(3): 297-326. doi: 10.1080/10643380091184192
|
[60] |
国家发展和改革委员会. 中华人民共和国有色金属行业标准: 铜精矿 YS/T 318—2007[S]. 北京: 中国标准出版社, 2007.
National Development and Reform Commission of the People's Republic of China. Non-ferrous MetallurgyStandard of the People's Republic of China: Copper concentrate. YS/T 318—2007[S]. Beijing: Standards Press of China, 2007(in Chinese).
|
[61] |
MOHAN D, PITTMAN C U Jr. Arsenic removal from water/wastewater using adsorbents—A critical review [J]. Journal of Hazardous Materials, 2007, 142(1/2): 1-53.
|
[62] |
LIN T F, WU J K. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics [J]. Water Research, 2001, 35(8): 2049-2057. doi: 10.1016/S0043-1354(00)00467-X
|
[63] |
TAKANASHI H, TANAKA A, NAKAJIMA T, et al. Arsenic removal from groundwater by a newly developed adsorbent [J]. Water Science and Technology, 2004, 50(8): 23-32. doi: 10.2166/wst.2004.0479
|
[64] |
PATTANAYAK J, MONDAL K, MATHEW S, et al. A parametric evaluation of the removal of As(Ⅴ) and As(Ⅲ) by carbon-based adsorbents [J]. Carbon, 2000, 38(4): 589-596. doi: 10.1016/S0008-6223(99)00144-X
|
[65] |
CHUANG C L, FAN M, XU M, et al. Adsorption of arsenic(Ⅴ) by activated carbon prepared from oat hulls [J]. Chemosphere, 2005, 61(4): 478-483. doi: 10.1016/j.chemosphere.2005.03.012
|
[66] |
DUTTA P K, RAY A K, SHARMA V K, et al. Adsorption of arsenate and arsenite on titanium dioxide suspensions [J]. Journal of Colloid and Interface Science, 2004, 278(2): 270-275. doi: 10.1016/j.jcis.2004.06.015
|
[67] |
PENA M E, KORFIATIS G P, PATEL M, et al. Adsorption of As(Ⅴ) and As(Ⅲ) by nanocrystalline titanium dioxide [J]. Water Research, 2005, 39(11): 2327-2337. doi: 10.1016/j.watres.2005.04.006
|
[68] |
DIXIT S, HERING J G. Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxide minerals: Implications for arsenic mobility [J]. Environmental Science & Technology, 2003, 37(18): 4182-4189.
|
[69] |
LI S L, LI J H, WANG W, et al. Recovery of gold from wastewater using nanoscale zero-valent iron [J]. Environmental Science:Nano, 2019, 6(2): 519-527. doi: 10.1039/C8EN01018H
|
[70] |
JANA N R, SAU T K, PAL T. Growing small silver particle as redox catalyst [J]. The Journal of Physical Chemistry B, 1999, 103(1): 115-121. doi: 10.1021/jp982731f
|