[1] DAI R, GUO H, TANG C Y, et al. Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds [J]. Environmental Science & Technology, 2019, 53(23): 13776-13783.
[2] GRAJALES D M, BERNARDES G J L, VERBEL J O. Urban endocrine disruptors targeting breast cancer proteins [J]. Chemical Research in Toxicology, 2016, 29(2): 150-161. doi: 10.1021/acs.chemrestox.5b00342
[3] WANG Z, SUN P, LI Y, et al. Reactive nitrogen species mediated degradation of estrogenic disrupting chemicals by biochar/monochloramine in buffered water and synthetic hydrolyzed urine [J]. Environmental Science & Technology, 2019, 53(21): 12688-12696.
[4] BASILE T, PETRELLA A, PETRELLA M, et al. Review of endocrine-disrupting-compound removal technologies in water and wastewater treatment plants: An EU perspective [J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8389-8401.
[5] 陈紫盈, 孙洁, 罗雪文, 等. BiVO4晶面生长调控及其光催化氧化罗丹明B和还原Cr(Ⅵ)的性能 [J]. 环境化学, 2020, 39(8): 2129-2136. doi: 10.7524/j.issn.0254-6108.2019061101 CHEN Z, SUN J, LUO X, et al. Growth regulation of BiVO4 crystal plane and photocatalytic oxidation of Rhodamine B and reduction of Cr(Ⅵ) [J]. Environmental Chemistry, 2020, 39(8): 2129-2136(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061101
[6] 刘子薇, 胡丽君, 孙振亚, 等. TiO2-FeOOH/Mmt纳米复合材料的表面酸碱性质及光催化性能 [J]. 环境化学, 2020, 39(3): 745-754. doi: 10.7524/j.issn.0254-6108.2019092707 LIU Z, HU L J, SUN Z Y, et al. The surface acidity and basicity and photocatalytic activity of TiO2-FeOOH/Mmt nanocomposites [J]. Environmental Chemistry, 2020, 39(3): 745-754(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092707
[7] ZHOU X, LIU N, SCHMUKI P. Photocatalysis with TiO2 nanotubes: “Colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes [J]. ACS Catalysis, 2017, 7(5): 3210-3235. doi: 10.1021/acscatal.6b03709
[8] ZHAO Z, SHEN B, HU Z, et al. Recycling of spent alkaline Zn-Mn batteries directly: combination with TiO2 to construct a novel Z-scheme photocatalytic system [J]. Journal of Hazardous Materials, 2020, 400: 123236. doi: 10.1016/j.jhazmat.2020.123236
[9] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials [J]. Chemical Reviews, 2014, 114(19): 9919-9986. doi: 10.1021/cr5001892
[10] ZHANG J, ZHOU D, DONG S, et al. Respective construction of Type-Ⅱ and direct Z-scheme heterostructure by selectively depositing CdS on {001} and {101} facets of TiO2 nanosheet with C-Dots modification: a comprehensive comparison [J]. Journal of Hazardous Materials, 2019, 366: 311-320. doi: 10.1016/j.jhazmat.2018.12.013
[11] DU J, MA S, LIU H, et al. Uncovering the mechanism of novel AgInS2 nanosheets/TiO2 nanobelts composites for photocatalytic remediation of combined pollution [J]. Applied Catalysis B:Environmental, 2019, 259: 118062. doi: 10.1016/j.apcatb.2019.118062
[12] WANG H, SU Y, ZHAO H, et al. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4 [J]. Environmental Science & Technology, 2014, 48(20): 11984-11990.
[13] LI J, ZHANG M, LI X, et al. Effect of the calcination temperature on the visible light photocatalytic activity of direct contact Z-scheme g-C3N4-TiO2 heterojunction [J]. Applied Catalysis B:Environmental, 2017, 212: 106-114. doi: 10.1016/j.apcatb.2017.04.061
[14] HUANG J, LI D, LI R, et al. One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin [J]. Journal of Hazardous Materials, 2020, 386: 121634. doi: 10.1016/j.jhazmat.2019.121634
[15] XIAO J, HAN Q, XIE Y, et al. Is C3N4 chemically stable toward reactive oxygen species in sunlight-driven water treatment? [J]. Environmental Science & Technology, 2017, 51(22): 13380-13387.
[16] CHAN M, CHEN C, LEE I, et al. Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots [J]. Inorganic Chemistry, 2016, 55(20): 10267-10227. doi: 10.1021/acs.inorgchem.6b01522
[17] WANG W, NIU Q, ZENG G, et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction [J]. Applied Catalysis B:Environmental, 2020, 273(15): 119051.
[18] GUO S, ZHEN M, LIU L, et al. Facile preparation and lithium storage properties of TiO2@graphene composite electrodes with low carbon content [J]. Chemistry-A European Journal, 2016, 22(34): 11943-11948. doi: 10.1002/chem.201602532
[19] GUO S, ZHANG X, ZHOU Z, et al. Facile preparation of hierarchical Nb2O5 microspheres with photocatalytic activities and electrochemical properties [J]. Journal of Materials Chemistry A, 2014, 2(24): 9236-9243. doi: 10.1039/C4TA01567C
[20] WANG L, GUO S, CHEN Y, et al. A mechanism investigation of how the alloying effect improves the photocatalytic nitrate reduction activity of bismuth oxyhalide nanosheets [J]. ChemPhotoChem, 2020, 4(2): 110-119. doi: 10.1002/cptc.201900217
[21] QIU B, ZHU Q, DU M, et al. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting [J]. Angewandte Chemie-International Edition, 2017, 56(10): 2684-2688. doi: 10.1002/anie.201612551
[22] LI J, ZHANG Z, CUI W, et al. The spatially oriented charge flow and photocatalysis mechanism on internal van der Waals heterostructures enhanced g-C3N4 [J]. ACS Catalysis, 2018, 8(9): 8376-8385. doi: 10.1021/acscatal.8b02459
[23] ZHANG L, YANG C, LV K, et al. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement [J]. Chinese Journal of Catalysis, 2019, 40(5): 755-764. doi: 10.1016/S1872-2067(19)63320-6