[1] FU F, WANG Q. Removal of heavy metal ions from wastewaters: a review [J]. Journal of Environmental Management, 2011, 92(3): 407-418.
[2] LI Z, MA Z, KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment [J]. Science of Total Environment, 2014, 468/469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090
[3] LI Z, CHEN J, GUO H, et al. Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater [J]. Advanced Materials, 2016, 28(15): 2983-2991. doi: 10.1002/adma.201504356
[4] RABÉ K, LIU L, NAHYOON N A, et al. Enhanced Rhodamine B and coking wastewater degradation and simultaneous electricity generation via anodic g-C3N4/Fe0(1%)/TiO2 and cathodic WO3 in photocatalytic fuel cell system under visible light irradiation [J]. Electrochimica Acta, 2019, 298: 430-439. doi: 10.1016/j.electacta.2018.12.121
[5] 张林, 冯江涛, 王宁, 等. 甘氨酸改性TiO2材料的合成及其对染料的吸附性能 [J]. 环境化学, 2018, 37(12): 2621-2629. doi: 10.7524/j.issn.0254-6108.2018012905 ZHANG L, FENG J T, WANG N, et al. Preparation of glycine functionalized TiO2 adsorbent and its adsorption performance for organic dyes [J]. Environmental Chemistry, 2018, 37(12): 2621-2629(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012905
[6] WANG Y, WANG Y, SONG X M, et al. BiOCl-based photocathode for photocatalytic fuel cell [J]. Applied Surface Science, 2020, 506: 144949. doi: 10.1016/j.apsusc.2019.144949
[7] RABÉ K, LIU L, NAHYOON N A, et al. Visible-light photocatalytic fuel cell with Z-scheme g-C3N4/Fe0/TiO2 anode and WO3 cathode efficiently degrades berberine chloride and stably generates electricity [J]. Separation and Purification Technology, 2019, 212: 774-782. doi: 10.1016/j.seppur.2018.11.089
[8] LIU N, HAN M, SUN Y, et al. A g-C3N4 based photoelectrochemical cell using O2/H2O redox couples [J]. Energy & Environmental Science, 2018, 11(7): 1841-1847.
[9] BAI Y, YANG P, WANG L, et al. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO [J]. Chemical Engineering Journal, 2019, 360: 473-482. doi: 10.1016/j.cej.2018.12.008
[10] WANG H-N, CHEN X, CHEN R, et al. A ternary hybrid CuS/Cu2O/Cu nanowired photocathode for photocatalytic fuel cell [J]. Journal of Power Sources, 2019, 435: 226766. doi: 10.1016/j.jpowsour.2019.226766
[11] LI M, LIU Y, DONG L, et al. Recent advances on photocatalytic fuel cell for environmental applications-The marriage of photocatalysis and fuel cells [J]. Science of Total Environment, 2019, 668: 966-978. doi: 10.1016/j.scitotenv.2019.03.071
[12] 吴斌, 方艳芬, 任慧君, 等. g-C3N4光催化降解2, 4-DCP的活性及机理 [J]. 环境化学, 2017, 36(7): 1484-1491. doi: 10.7524/j.issn.0254-6108.2017.07.2016102508 WU B, FANG Y F, REN H J, et al. Activity and mechanism of photocatalytic degradation for 2, 4-DCP over g-C3N4 [J]. Environmental Chemistry, 2017, 36(7): 1484-1491(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.07.2016102508
[13] 张聪, 米屹东, 马东, 等. CeO2/g-C3N4光催化剂的制备及性能 [J]. 环境化学, 2017, 36(1): 147-152. doi: 10.7524/j.issn.0254-6108.2017.01.2016051706 ZHANG C, MI Y D, MA D, et al. Preparation and photocatalytic performance of CeO2/g-C3N4 photocatalysts [J]. Environmental Chemistry, 2017, 36(1): 147-152(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051706
[14] LAN M, FAN G, YANG L, et al. Enhanced visible-light-induced photocatalytic performance of a novel ternary semiconductor coupling system based on hybrid Zn-in mixed metal oxide/g-C3N4 composites [J]. RSC Advances, 2015, 5(8): 5725-5734. doi: 10.1039/C4RA07073A
[15] ZHAO L, WANG L, YU P, et al. A Chromium Nitride/carbon nitride containing graphitic carbon nanocapsule hybrid as a pt-free electrocatalyst for oxygen reduction [J]. Chemical Communications, 2015, 51(62): 12399-12402. doi: 10.1039/C5CC04482K
[16] LUO W B, CHOU S L, WANG J Z, et al. A metal-free, free-standing, macroporous graphene@ g-c3n4 composite air electrode for high-energy lithium oxygen batteries [J]. Small, 2015, 11(23): 2817-2824. doi: 10.1002/smll.201403535
[17] GAI P, SONG R, ZHU C, et al. A ternary hybrid of carbon nanotubes/graphitic carbon nitride nanosheets/gold nanoparticles used as robust substrate electrodes in enzyme biofuel cells [J]. Chemical Communications, 2015, 51(79): 14735-14738. doi: 10.1039/C5CC06062A
[18] HAN D, MING W, XU H, et al. Chemical trend of transition-metal doping in WSe2 [J]. Physical Review Applied, 2019, 12(3): 034038. doi: 10.1103/PhysRevApplied.12.034038
[19] YIN C, WANG X, CHEN Y, et al. A ferroelectric relaxor polymer-enhanced p-type WSe2 transistor [J]. Nanoscale, 2018, 10(4): 1727-1734. doi: 10.1039/C7NR08034D
[20] WU J M, SUN Y-G, CHANG W E, et al. Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers [J]. Nano Energy, 2018, 46: 372-382. doi: 10.1016/j.nanoen.2018.02.010
[21] XUE H, DAI Y, KIM W, et al. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure [J]. Nanoscale, 2019, 11(7): 3240-3247. doi: 10.1039/C8NR09248F
[22] 齐中, 王熙, 李来胜, 等. 基于水热法制备的TiO2 /MoS2复合光催化剂及其光催化制氢活性 [J]. 环境化学, 2016, 35(5): 1027-1034. doi: 10.7524/j.issn.0254-6108.2016.05.2015112403 QI Z, WANG X, LI L, et al. Development of TiO2 /MoS2 by hydrothermal method for photocatalytic hydrogen generation under solar light [J]. Environmental Chemistry, 2016, 35(5): 1027-1034(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2015112403
[23] TEICH J, DVIR R, HENNING A, et al. Light and complex 3D MoS2/graphene heterostructures as efficient catalysts for the hydrogen evolution reaction [J]. Nanoscale, 2020, 12(4): 2715-2725. doi: 10.1039/C9NR09564K
[24] MUKHERJEE S, BISWAS S, DAS S, et al. Solution-processed, hybrid 2D/3D MoS2/Si heterostructures with superior junction characteristics [J]. Nanotechnology, 2017, 28(13): 135203. doi: 10.1088/1361-6528/aa5e42
[25] AGARWAL V, VARGHESE N, DASGUPTA S, et al. Engineering a 3D MoS2 foam using keratin exfoliated nanosheets [J]. Chemical Engineering Journal, 2019, 374: 254-262. doi: 10.1016/j.cej.2019.05.185
[26] ANWER S, HUANG Y, LI B, et al. Nature-Inspired, Graphene-Wrapped 3D MoS2 Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries [J]. ACS Applied Materials and Interfaces, 2019, 11(25): 22323-22331. doi: 10.1021/acsami.9b04260
[27] CHENG R, LI D, ZHOU H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes [J]. Nano Letters, 2014, 14(10): 5590-5597. doi: 10.1021/nl502075n
[28] PESCI F M, SOKOLIKOVA M S, GROTTA C, et al. MoS2/WS2 heterojunction for photoelectrochemical water oxidation [J]. ACS Catalysis, 2017, 7(8): 4990-4998. doi: 10.1021/acscatal.7b01517
[29] WU J M, CHANG W E, CHANG Y T, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers [J]. Advanced Materials, 2016, 28(19): 3718-3725. doi: 10.1002/adma.201505785
[30] LIU W, WANG M, XU C, et al. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties [J]. Chemical Engineering Journal, 2012, 209: 386-393. doi: 10.1016/j.cej.2012.08.033
[31] SI K, MA J, LU C, et al. A two-dimensional MoS2/WSe2 van der Waals heterostructure for enhanced photoelectric performance [J]. Applied Surface Science, 2020, 507: 145082. doi: 10.1016/j.apsusc.2019.145082